General Solution to the Logistic Differential Equation

February 12, 2008

Let us be concerned with a population P that varies in direct proportion to its current quantity and its
maximum quantity Ppax with constant of proportionality k; that is,
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Separation of variables gives
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of which the left side can be integrated using partial fractions (for some constants A and B) as follows:
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and, clearing the denominators, A (Ppax — P)+ BP = 1 which can be rearranged to P(B — A) 4+ Pyax4 = 1,
50 PpaxA =1 and B — A =0, which gives A = B = 51—
Therefore :
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(noting that since we have two equivalent integrals, we need only include a constant of integration on one
side). The second natural logarithm may be rewritten as —In (P — Ppax), S0 we have

so we have
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We rearrange this to give
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for a different C', but a constant nonetheless; now, we must solve for P:
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again for a different C. Now P = (P — Ppay) Cefmaxkt = pCePmaxkt _ p . CePmaxkt op P — PCelmaxkt =
— PaxCelPmaxkt. equivalently, P (1 — Cera"kt) = — PraxCem<kt and finally,
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or, if you prefer,
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It can be shown that if the population at time ¢t = 0 is Cy, then
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so the equation is
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which can also be written as
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