
AP Calculus BC Vector Functions: Additional problems for Assignments #90-93 DO ON SEPARATE PAPER! ©

- 1. Find the domain of the function $\mathbf{r}(t) = \left\langle \sqrt{t-1}, \sqrt{5-t} \right\rangle$
- 2. Find the limit: $\lim_{t \to 0+} \mathbf{r}(t)$ if $\mathbf{r}(t) = \langle \cos t, t \ln t \rangle$
- 3. Find the limit: $\lim_{t \to 1} \mathbf{r}(t)$ if $\mathbf{r}(t) = \left\langle \frac{t-1}{t^2-1}, \frac{\tan t}{t} \right\rangle$
- 4. Sketch the curve given by $\mathbf{r}(t) = \langle t^4 + 1, t \rangle$. Indicate the direction of motion.
- 5. Sketch the curve given by $\mathbf{r}(t) = \langle t^3, t^2 \rangle$. Indicate the direction of motion.

- 6. Find $\lim_{t\to 2} \mathbf{R}(t)$ if $\mathbf{R}(t) = (3t-2)\mathbf{i} + t^2\mathbf{j}$
- 7. The figure at right shows a curve *C* given by a vector function $\mathbf{r}(t)$.
 - a) Draw the vectors $\mathbf{r}(4.5) \mathbf{r}(4)$ and $\mathbf{r}(4.2) \mathbf{r}(4)$
 - b) Draw the vectors $\frac{\mathbf{r}(4.5) \mathbf{r}(4)}{0.5}$ and $\frac{\mathbf{r}(4.2) \mathbf{r}(4)}{0.2}$
 - c) Write an expression for r'(4), and graph the tangent (velocity) vector.

- 8. a) Sketch the plane curve given by the vector equation $\mathbf{r}(t) = (1+t)\mathbf{i} + t^2\mathbf{j}$
 - b) Find the velocity vector $\mathbf{r}'(t)$
 - c) Sketch the position and velocity vectors at t = 1
- 9. a) Sketch the plane curve given by the vector equation $\mathbf{r}(t) = e^t \mathbf{i} + e^{3t} \mathbf{j}$
 - b) Find the velocity vector $\mathbf{r}'(t)$
 - c) Sketch the position and velocity vectors at t = 0

- 10. Given the Vector-Valued Function $\mathbf{r}(t) = \langle 2t + 4, t^2 \rangle$
 - a) Find the domain of the function
 - b) Find the value of the function when t = 2
 - c) Find $|\mathbf{r}(t)|$ when t = 2
 - d) Find the velocity vector $\mathbf{r}'(t)$
 - e) Find the speed of the tip of the vector when t = 2
 - f) Find the acceleration vector $\mathbf{r}''(t)$
- 11. Given $\mathbf{r} = (4\sin t)\mathbf{i} + (5 4\cos t)\mathbf{j}$
 - a) Sketch the graph of this function
 - b) Find the velocity vector
 - c) Find the acceleration vector
 - d) Add sketches of the velocity and acceleration vectors at $t = \pi$ to the graph of the function from part a).
 - e) Find the slope of the function when $t = \frac{4\pi}{3}$
- 12. Given $\mathbf{r} = \ln(t+1)\mathbf{i} + (\sin^{-1}t)\mathbf{j}$
 - a) Give the domain of the function
 - b) Find the velocity and acceleration of this function
 - c) Find the speed of the tip of the vector when t = 0.5
 - d) Find $|\mathbf{r}(t)|$
 - e) Find $\int \mathbf{r}(t) dt$
 - f) Find $\int_0^1 \mathbf{r}(t) dt$
- 13. A particle moves around the ellipse $\frac{y^2}{9} + \frac{z^2}{4} = 1$ in the yz-plane such that it position at time *t* is given by $\mathbf{r}(t) = (3\cos t)\mathbf{j} + (2\sin t)\mathbf{k}$. Find the maximum and minimum values of $|\mathbf{v}|$ and $|\mathbf{a}|$.

14. Solve the initial value problem for \mathbf{r} as a vector function of t:

$$\frac{d\mathbf{r}}{dt} = \left(\frac{3}{2}\sqrt{t+1}\right)\mathbf{i} + \left(e^{-t}\right)\mathbf{j} + \left(\frac{1}{t+1}\right)\mathbf{k} \text{ and } \mathbf{r}(0) = \mathbf{k}$$

15. Find
$$\frac{d}{dt} |\mathbf{R}(t)|$$
 if $\mathbf{R}(t) = (e^t + 1)\mathbf{i} + (e^t - 1)\mathbf{j}$

16. Find
$$\mathbf{R}'(t) \cdot \mathbf{R}''(t)$$
 if $\mathbf{R}(t) = \ln(t-1)\mathbf{i} + (-3t^{-1})\mathbf{j}$

17. Show that a vector with constant length is always perpendicular to its velocity vector.

- 18. Find the angle between the functions $\mathbf{R}(t) = 3e^{2t}\mathbf{i} 4e^{2t}\mathbf{j}$ and $\mathbf{R}(t) = 6e^{3t}\mathbf{j}$.
- 19. Suppose a projectile is fired into the air at an initial velocity of 900 m/sec and at an angle of 30° (yes that's degrees!) from the ground.
 - a) Write a vector equation that models the path of the projectile, using time t in seconds after launch as the parameter.
 - b) Find the maximum height of the projectile.
 - c) Find the range of the projectile.