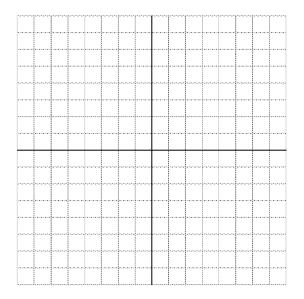
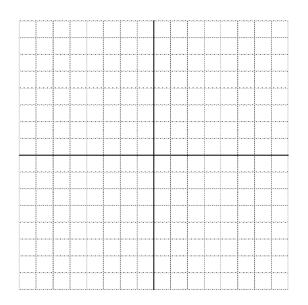
AP Calculus BC Lesson 11.3 Polar Coordinates

- 1. Convert each polar ordered pair into rectangular coordinates:
 - (a) $(3,30^{\circ})$ (b) $(-5,180^{\circ})$ (c) $(2,\frac{\pi}{3})$ (d) $(1,\frac{5\pi}{6})$ (e) $(-1,\pi)$
- 2. Convert each rectangular ordered pair into polar coordinates:
 - (a) (1,1) (b) $(-1,\sqrt{3})$ (c) $(-\sqrt{2},\sqrt{2})$
- 3. Convert each polar equation into a parametric equation:
 - (a) $r = 3\cos(\theta)$ (b) $r = 6\sin(2\theta)$ (c) $r = 2^{\theta}$
- 4. Show that the polar coordinates (r, θ) and $(-r, \theta + \pi)$ give the same point in Cartesian coordinates.
- 5. (Are you in a good mode?)(a) Find the point(s) of intersection of the curves

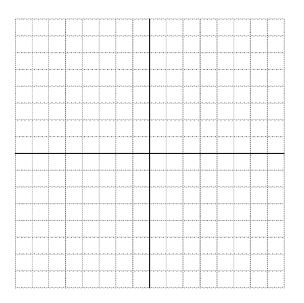

 $r = \cos(2\theta)$ and $r = 1 + 3\cos(\theta)$.

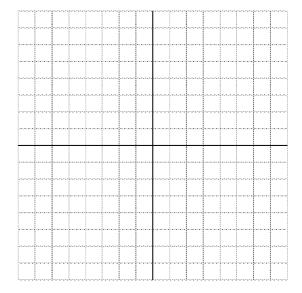
(b) Solve the system: $r = \cos(2\theta)$ $r = 1 + 3\cos(\theta)$

Is your answer any different from the answer in part (a)? Explain.

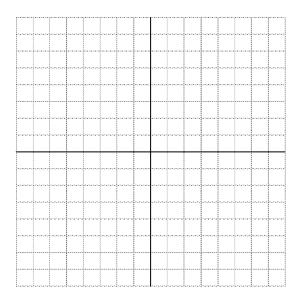

- 6. For each of the following polar equations, graph the equation BY HAND and name the curve:
 - (a) $r = 4\sin(\theta)$

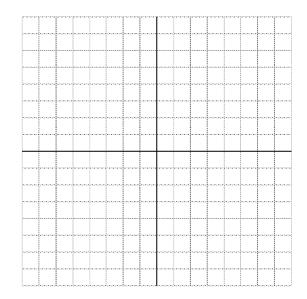
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$
r															

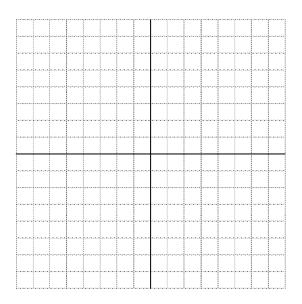


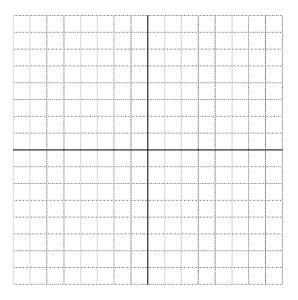

(b) $r = 4 + 6\cos(\theta)$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$
r															


(c)
$$r = 6\sin(3\theta)$$
 (d) $r^2 = 4\cos(\theta)$






(e)
$$r = 2^{\theta/\pi}$$

(f)
$$r = \frac{6}{1 - 2\cos(\theta)}$$

