AP Calculus BC Lesson 11.4 Polar Calculus

- 1. Consider the polar function $r(\theta) = 4\cos\theta$.
 - a) Sketch a graph of the function:

b) Find
$$\frac{dr}{d\theta}$$

- c) Find the values of $\frac{dr}{d\theta}$ at the points where $\theta = \frac{\pi}{6}$ and $\theta = \frac{3\pi}{4}$. What do these values mean in terms of the motion along the graph?
- d) When is $\frac{dr}{d\theta}$ positive? negative? zero?
- e) Find parametric equations for the function, using θ as the parameter.

f) Find
$$\frac{dy}{dx}$$
 in terms of θ . Simplify, if you can

g) Find an equation for the line tangent to the graph at the point where $\theta = \frac{\pi}{6}$.

h) Find
$$\frac{d^2 y}{dx^2}$$
 in terms of θ , and evaluate at $\theta = \frac{\pi}{6}$.

- 2. Consider the function $r(\theta) = 4\cos(3\theta)$:
 - a) Find a range of values for θ that would trace the rightmost loop of the graph exactly once.
 - b) Identify any points on the graph where the derivative $\frac{dr}{d\theta}$ is 0.

- c) For what value(s) of θ is $\frac{dr}{d\theta}$ positive?
- d) Find the point(s) on the graph where the tangent line is horizontal.

e) Use Calculus to find the leftmost point(s) on the graph.

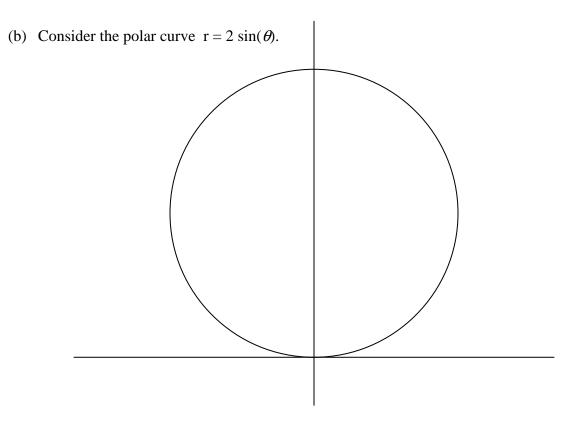
3. Given the parametric equations for a polar function $r = f(\theta)$: $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$, find an expression for $\frac{dy}{dx}$ in terms of r and θ .

4. Show that $\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 + r^2$, given that $x = r\cos\theta$ and $y = r\sin\theta$. [*Hint: treat r as a function of* θ *and use the chain rule to differentiate*]

- 5. Find the total length of the following polar curves:
 - (a) $r = 4 8\cos(\theta)$

- (b) $r = \sin(3\theta)$
- (c) $r = e^{\theta}$ for $0 \le \theta \le 2$

6. (a) Find (or recall) a formula for the area of a sector of a circle in terms of the radius of the circle, r, and the central angle of the sector, θ .



Find the area enclosed by this curve using the following method:

i. Divide the area into six parts using the lines

$$\theta = \frac{\pi}{6}, \ \theta = \frac{\pi}{3}, \ \theta = \frac{\pi}{2}, \ \theta = \frac{2\pi}{3}, \ \theta = \frac{5\pi}{6}.$$

- ii. Approximate the area of each part using circular sectors. Use the largest angle measure in each part to determine the radius of the sector.
- iii. Write a Riemann sum that would approximate the area inside the curve for n divisions.
- iv. Write an integral that represents the exact area, and evaluate the integral.

7. Draw and shade the area represented by the integral:

a)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2} (4\cos\theta)^2 d\theta$$

b)
$$\int_0^{\frac{\pi}{4}} \frac{1}{2} (4\sin\theta)^2 d\theta$$

c)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2} (4\cos(3\theta))^2 d\theta$$

- 8. [1993-BC5] Consider the polar curve $r = 2 \sin(3\theta)$, for $0 \le \theta \le \pi$.
 - (a) In the *xy*-plane sketch the curve.
 - (b) Find the area of the region inside the curve.
 - (c) Find the slope of the curve at the point where $\theta = \frac{\pi}{4}$.

- 9. Find the following areas
 - (a) The area inside one leaf of the rose $r = 4\cos(2\theta)$
 - (b) The area inside the outer loop but outside the inner loop of $r = 4 8\cos(\theta)$.
- 10. [1990 BC 4] Let *R* be the region inside the graph of the polar curve r = 2 and outside the graph of the polar curve $r = 2(1 \sin(\theta))$.
 - (a) Sketch the two curves in the *xy*-plane.
 - (b) Find the area of R.
- 11. [1984 BC 4] Consider the curves $r = 3\cos(\theta)$ and $r = 1 + \cos(\theta)$.
 - (a) Sketch the two curves in the *xy*-plane.
 - (b) Find the area of the region inside the curve $r = 3\cos(\theta)$ and outside the curve $r = 1 + \cos(\theta)$.

12. Find the area shared by the circles $r = 2\cos(\theta)$ and $r = 2\sin(\theta)$.