Squeeze Theorem

If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Geometric Sequences

The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$
\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}
$$

Definition of Convergence for an Infinite Series

When 1 *n* $n = \sum u_k$ *k* $S_n = \sum a$ = $=\sum_{n=1}^{\infty} a_k$, if $\lim_{n\to\infty} S_n = S$, for some finite number *S*, then the series 1 *k k a* ∞ = $\sum a_k$ converges to the limit *S*. Otherwise the series diverges.

Geometric Series

If $|r| < 1$, the geometric series $\sum ar^k = a + ar + ar^2 + ar^3$ 0 $k = a + ar + ar² + ar³ + ...$ *k* $ar^k = a + ar + ar^2 + ar$ ∞ = $\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + ...$ converges to $\frac{a}{1-r}$. *a* − *r*

If $a \neq 0$ and $|r| \geq 1$, the series diverges.

(nth Term) Test for Divergence

If $\lim_{n \to \infty} a_n \neq 0$, then 1 *k k a* ∞ = $\sum a_k$ diverges.

Integral Test for Positive Series

Suppose that, for $x \ge 1$, the function $a(x)$ is continuous, positive and decreasing. Consider the series 1 *k k a* ∞ = $\sum_{k=1}^{\infty} a_k$ and the integral $\int_1^{\infty} a(x) dx$.

- If either diverges, so does the other.
- If either converges, so does the other. In this case,

$$
\int_{1}^{\infty} a(x)dx \le \sum_{k=1}^{\infty} a_k \le a_1 + \int_{1}^{\infty} a(x)dx
$$

• If the series converges, then

$$
\int_{n+1}^{\infty} a(x)dx \le R_n = \sum_{k=n+1}^{\infty} a_k \le \int_{n}^{\infty} a(x)dx.
$$

p-Series (hyperharmonic) Test

The p-series
$$
\sum_{k=1}^{\infty} \frac{1}{k^p}
$$
 converges *if and only if* p > 1

Suppose that for $k \ge 1$, $0 \le a_k \le b_k$. Consider the two series 1 *k k a* ∞ = $\sum a_k$ and 1 *k k b* ∞ = $\tilde{\Sigma}$

If
$$
\sum_{k=1}^{\infty} b_k
$$
 converges, so does $\sum_{k=1}^{\infty} a_k$, and $\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k$
If $\sum_{k=1}^{\infty} a_k$ diverges, so does $\sum_{k=1}^{\infty} b_k$
Limit Comparison Te

Suppose that Σ a_n and Σ b_n are series with positive terms. If $\lim_{n \to \infty} \frac{1}{n}$ *n*→∞ *b*_{*n*} *a* $= c$ where c is a finite number and

c>0, then either both series converge or both diverge.

Alternating Series Test

Consider the series $\sum (-1)^{k+1}$ 1 1 *k k k c* $\sum_{k=1}^{\infty}$ (λ^{k+1} = $\sum_{k=1}^{\infty} (-1)^{k+1} c_k$ where

• $c_1 \geq c_2 \geq c_3 \geq \ldots \geq 0;$

$$
\bullet \qquad \lim_{k \to \infty} c_k = 0
$$

Then the series converges, and its limit *S* lies between any two successive partial sums; that is for each n ≥ 1, either S_n ≤ S ≤ S_{n+1} *or* S_{n+1} ≤ S ≤ S_n . In particular $|S - S_n|$ < c_{n+1} .

Absolute and Conditional Convergence

• If
$$
\sum_{k=1}^{\infty} |a_k|
$$
 diverges but $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges conditionally.
 $\sum_{k=1}^{\infty} |a_k|$

• If
$$
\sum_{k=1}^{\infty} |a_k|
$$
 converges then $\sum_{k=1}^{\infty} a_k$ converges absolutely and $\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$

Ratio Test Suppose that 1 *k k a* ∞ = $\sum_{k=1}^{n} a_k$ is a series and that $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$ $\left| \frac{a_{k+1}}{a_{k+1}} \right| = L$ *a* + $\lim_{\rightarrow \infty} \left| \frac{a_{k+1}}{a} \right| = L$

- If $L < 1$, then 1 *k k a* ∞ = $\sum a_k$ converges conditionally.
- If $L > 1$, (or $L \rightarrow \infty$) then 1 *k k a* ∞ = $\sum a_k$ diverges.
- If $L = 1$, either convergence or divergence is possible so the test is inconclusive.

Root Test

- (i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, $a_n = L$ →∞ $= L < 1$, then the series $\sum_{n=1}^{\infty}$ ⁿ *a* ∞ = $\sum a_n$ is absolutely convergent.
- (ii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ $a_n = L$ →∞ $= L > 1$ or $L \rightarrow \infty$ then the series $\sum_{n=1}^{\infty}$ ⁿ *a* ∞ = $\sum a_n$ is divergent.

(iii)If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, *a* →∞ $= 1$, then the test in inconclusive. Let $S(x) = \sum_{k} c_k (x - a)^k$ 0 (x) ∞ = $=\sum_{k=0}^{n}c_{k}(x-a)^{k}$ *k k* $S(x) = \sum_{k=0}^{n} (x - a)^{k}$ be a power series then there are only three possibilities:

- (i) The series converges only when $x = a$.
- (ii) The series converges for all *x*.
- (iii) There is a positive number *R* such that the series converges if $|x a| < R$ and diverges if $|x a| > R$.

Derivatives and Integrals of power series.

If the power series $\sum c_k (x-a)^k$ c_k ($x - a$)^{*} has a radius of convergence $R > 0$, then the function *f* defined by

 $(x-a)^{y}$ 0 $\left(x\right)$ ∞ = $=\sum_{k=0}^{n}c_{k}(x-a)^{k}$ *k k* $f(x) = \sum_{k} c_k (x - a)^k$ is differentiable (and therefore continuous) on the interval $(a - R, a + R)$ and

(i)
$$
f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + ... = \sum_{k=1}^{\infty} kc_k(x-a)^{k-1}
$$

(ii)
$$
\int f(x)dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + ... = C + \sum_{k=0}^{\infty} c_k \frac{(x-a)^{k+1}}{k+1}
$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Maclaurin Series

Let *f* be any function with infinitely many derivatives at $x = 0$. The **Maclaurin series** for *f* is the series 0 *k k k* $a_k x$ ∞ = $\sum_{k=1}^{\infty} a_k x^k$, with coefficients given by $a_k = \frac{f^{(k)}(0)}{h!}$! *k k* $a_k = \frac{f}{f}$ *k* $=\frac{J(0)}{I(0)}$ where $k = 0, 1, 2, ...$

Taylor Series

The **Taylor series** for *f*, expanded about $x = a$, has the form $\sum_{n=1}^{\infty} \frac{f^{(k)}(a)}{b!}(x-a)^n$ (k) $\frac{1}{0}$ $k!$ $f^{(k)}(a)$ ₍ λ^{k} *k* $f^{(k)}(a)$ $x - a$ *k* ∞ = $\sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{b!} (x-a)^k$.

Taylor's Theorem

If $|f^{(n+1)}(x)| \le M$ for $|x-a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality:

$$
|R_n(x)| = |f(x) - T_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1}
$$
 for $|x - a| \le d$

Familiar Limits of Sequences

1.
$$
\lim_{n \to \infty} \frac{\ln n}{n} = 0
$$

2. $\lim_{n \to \infty} \sqrt[n]{n} = 1$
3. $\lim_{n \to \infty} x^n = 1 (x > 0)$
4. $\lim_{n \to \infty} x^n = 0 (|x| < 1)$
5. $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$
6. $\lim_{n \to \infty} \frac{x^n}{n!} = 0$

Familiar Power Series

