
Some Short Sequence and Series Strategies 
 

Squeeze Theorem 
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Geometric Sequences 

 
The sequence {rn} is convergent if -1 < r ≤ 1 and divergent for all other values of r. 
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Definition of Convergence for an Infinite Series 

When
1

n

n k
k

S a
=

=∑ , if lim n
n

S S
→∞

= , for some finite number S, then the series 
1

k
k

a
∞

=
∑  converges to the limit S.  

Otherwise the series diverges. 
 

Geometric Series 

If |r| < 1, the geometric series 2 3
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If a ≠ 0 and |r| ≥ 1, the series diverges. 
 

(nth  Term) Test for Divergence 
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Integral Test for Positive Series 

 
Suppose that, for x ≥ 1, the function a(x) is continuous, positive and decreasing.  Consider the series 

1
k

k

a
∞

=
∑  and the integral 

1
( ) .a x dx

∞

∫  

• If either diverges, so does the other. 
• If either converges, so does the other.  In this case,  
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p-Series (hyperharmonic) Test 
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Comparison Test for Nonnegative Series 

Suppose that for k ≥ 1, 0 ≤ ak ≤ bk.  Consider the two series 
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Limit Comparison Test 

Suppose that Σ an and Σ bn are series with positive terms.  If lim n
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c>0, then either both series converge or both diverge. 
 

Alternating Series Test 

Consider the series ( ) 1
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Then the series converges, and its limit S lies between any two successive partial sums; that is for each  
n ≥ 1, either Sn ≤ S ≤ Sn+1 or Sn+1 ≤ S ≤ Sn. In particular |S – Sn| < cn+1. 

 
Absolute and Conditional Convergence 
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Ratio Test 
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• If L = 1, either convergence or divergence is possible so the test is inconclusive. 
 

Root Test 
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Power Series 
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S x c x a be a power series then there are only three possibilities: 

(i)    The series converges only when x = a. 
(ii)   The series converges for all x. 
(iii)  There is a positive number R such that the series converges if |x - a| < R and diverges if |x - a| > R. 
 
 

Derivatives and Integrals of power series. 
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The radii of convergence of the power series in Equations (i) and (ii) are both R. 
 
 

Maclaurin Series 
 

 
Let f be any function with infinitely many derivatives at x = 0.  The Maclaurin series for f is the series  
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Taylor Series 

 

The Taylor series for f, expanded about x = a, has the form 
( ) ( )

( )

0 !

k
k

k

f a
x a

k

∞

=

−∑ . 

 
 

Taylor’s Theorem 
 

If  ( 1)( )+ ≤nf x M for − ≤x a d , then the remainder Rn(x) of the Taylor series satisfies the inequality: 
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Familiar Limits of Sequences 
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Familiar Power Series 
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