
AP Calculus BC 
Lesson 12.2 Series 
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(a)  Explain what your calculator gives if you graph 
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(b) How many terms must you add for the sum to be greater than .49? 
 
 
(c) What is the sum of the first 100 terms of this series? 
 
 

(d) Find an explicit formula for 
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(f) Does the series 
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(g) Find an explicit formula for Rn. 
 
 
(h) Show that { }nR  is decreasing and bounded below. 
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2. Determine whether each of the following series converges or diverges: 
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3. Consider the series S = ( )( )1
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 (a) Find the first twenty terms of the sequence { }nS , where Sn = ( )( )1
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 (b) Graph the first twenty terms of { }nS . 

 
 (c) Find lim n
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3. Consider the sequence defined by 
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(a) Find 
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(b) Graph the sequence of partial sums and trace the values. 
 

(c) Graph the horizontal line 
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 Note:  Euler proved that 2
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number.  It can be shown that 
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(d) Redo problems (a) and (b) with each of the following sequences and their associated 

series. 
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5. (a) Graph the first 50 terms of the sequence of partial sums determined by the series 
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(b) Draw the graphs of y = ln(x) and y = ln(x) + 1 on the same axes.  Does 
1
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or diverge?  Explain your reasoning. 
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 (c) Find 
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 (d) Determine whether 
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(e) Use the results of problems (a)-(d) to make a conjecture about lim n
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7. If the series converges, find its sum.  If it diverges, explain why. 
 

  1. 
1

1

2

5n
n

∞

−
=
∑      2. 

1

1

2

3

n

n
n

−∞

=
∑  

 

  3. 
1

2 1

3

n

n
n

∞

=

−
∑      4. 

1

1
1

n

n n

∞

=

 − 
 

∑  

 

  5. 
2

1

1

4 1n n

∞

= −∑      6. ( )
1

cos
n

nπ
∞

=
∑  

 

  7. 
1

tan
6

n

n

π∞

=

  
  
  

∑     8. 
1

1
ln

n n

∞

=

 
 
 

∑  

 

  9. ( ) 1

1

5
1

8
n

n
n

∞
+

=
−∑    10. 

1n

n
∞

=
∑  

 

 11. 
1

n

n

e
∞

−

=
∑     12. 

1

!

50000n
n

n∞

=
∑  

 

 13. 
1

1

2 1n
n

∞

= +∑     14. 
0

1

!n n

∞

=
∑      


