AP Calculus BC

Lesson 12.3 The Integral Test

- 1. (a) Show that $\frac{1}{n^2} \le \int_{n-1}^n \frac{dx}{x^2}$.
 - (b) Show that $0 \le \sum_{n=2}^{\infty} \frac{1}{n^2} \le \int_1^{\infty} \frac{dx}{x^2}$.
 - (c) Determine whether $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges or diverges. Explain your reasoning.
 - (d) Use the results of problems (a) and (b) to show that $\int_{1}^{\infty} \frac{dx}{x^{2}} \le \sum_{n=1}^{\infty} \frac{1}{n^{2}} \le a_{1} + \int_{1}^{\infty} \frac{dx}{x^{2}}.$
 - (e) Use the result of problem (d) to approximate $\sum_{n=1}^{50} \frac{1}{n^2}$.
 - (f) Approximate $\sum_{n=1}^{50} \frac{1}{n^2}$ by a different method.
 - (g) Draw a graph of the first fifty partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (h) Draw a graph of the horizontal line $y = \frac{\pi^2}{6}$ on the same axes.

- 2. (a) Graph the first fifty terms of the sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n}$. Do you think this series converges or diverges? Explain your reasoning.
 - (b) Draw the graphs of $y = \ln(x)$ and $y = \ln(x) + 1$ on the same axes. Do you think the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges? Explain your reasoning.

- (c) Explain why $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots$
- (d) Determine whether $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges. Explain your reasoning.
- (e) Does $\int_{1}^{\infty} \frac{dx}{x}$ converge or diverge? What is the connection to the convergence or divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$?
- 3. Determine under what conditions the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.

4. Determine whether each series converges or diverges.

a)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$

$$b) \quad \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

$$c) \qquad \sum_{n=1}^{\infty} \frac{n^2}{4n^3 + 1}$$

$$d) \quad \sum_{n=1}^{\infty} \frac{n}{5n^2 + 3}$$

e)
$$\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+4)}$$

f)
$$\sum_{n=1}^{\infty} \frac{2n+3}{\left(n^2+3n\right)^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \ge \int_1^{\infty} \frac{dx}{x^2} = 1$$

$$0 \le \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \sum_{n=2}^{\infty} \frac{1}{n^2} \le 1 + \int_{1}^{\infty} \frac{dx}{x^2} = 2$$

$$\infty = \int_{1}^{\infty} \frac{dx}{x} \ge \sum_{n=1}^{\infty} \frac{1}{n} \ge 0$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \ge \int_{1}^{\infty} \frac{dx}{x} = \infty$$