AP Calculus BC Lesson 12.9 Functions as Power Series

1. Find an infinite series and the interval of convergence for each of the following functions.

a.
$$\frac{1}{1-x}$$

b.
$$\frac{1}{1+x^2}$$

c.
$$\tan^{-1}(x)$$

- 2. Use your results from problem 1 to find power series for each of the following functions:
 - a. $f(x) = x^3 \tan^{-1} x$

b. $f(x) = \tan^{-1} x^2$

$$f(x) = \frac{x^2}{1 - x^3}$$

d.
$$f(x) = \frac{x - \tan^{-1} x}{x^3}$$

3. (a) Find a power series for $f(x) = \frac{1}{1+x}$.

- (b) Find the interval of convergence for f.
- (c) Find a power series for f'(x).
- (d) Find the interval of convergence for f'(x).
- (e) Find a power series for $\ln(1 + x)$.
- (f) Find the interval of convergence for the series of part (e).
- (g) Find a power series expansion for $\ln(x^2+1)$

(h) Find a power series expansion for
$$\ln\left(\frac{1+x}{1-x}\right)$$
.

- 4. Use a power series to write an infinite series of constants equivalent to each number:
 - a. $\frac{\pi}{4}$ (hint: use a power series for $\tan^{-1} x$)
 - b. $\ln 2$ (hint: use a power series for $\ln(x+1)$)
- 5. Use a power series to approximate the integral to six decimal places:

a.
$$\int_0^{0.1} \frac{dx}{1+x^3}$$

b.
$$\int_0^{0.2} x \ln(1+x^2) dx$$

6. Use a power series to evaluate each limit:

a.
$$\lim_{x \to 0} \frac{\tan^{-1} x}{x}$$
 b. $\lim_{x \to 0} \frac{\ln(x^3 + 1)}{x}$