## **AP Calculus BC**

Lesson 2.4 Openers Part 1: Limit Definition - Linears

- 1. If f(x) = 3x + 4, then f(2) = 10. How close to  $x_0 = 2$  must we hold x to be sure that f lies within a. 2 units of  $y_0 = 10$ ?
  - b.  $\frac{1}{10}$  units of  $y_0 = 10$ ?

Estimate graphically and confirm algebraically.

- 2. If f(x) = 4x 6, then f(3) = 6.
  - a) Let  $\varepsilon = 0.01$ . Find a value  $\delta > 0$  for which  $|x-3| < \delta \Longrightarrow |f(x)-6| < \varepsilon$ .
  - b) For your  $\delta$ , prove that  $0 < |x-3| < \delta \Rightarrow |f(x)-6| < \varepsilon$ .

3. Given the function  $f(x) = \sqrt{x}$  shown at right: Find a value for  $\delta$  such that

$$|x-4| < \delta \Longrightarrow |f(x)-2| < 0.3$$



4. The formal definition of  $\lim_{x\to a} f(x) = L$  is given as follows:

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x-a| < \delta \Rightarrow |f(x) - L| < \varepsilon$ 

Explain this definition visually.

5. Use the formal  $\delta - \varepsilon$  definition to prove that  $\lim_{x \to 3} (-2x + 5) = -1$ .