BC Calculus

Limit Definitions

Definition: $\lim_{x \to a} f(x) = L$ if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

Definition: $\lim_{x \to \infty} f(x) = L$ if and only if $\forall \epsilon > 0, \exists M > 0$ such that $x > M \Rightarrow |f(x) - L| < \epsilon$.

Definition: $\lim_{x \to a} f(x) = \infty$ if and only if $\forall N > 0, \exists \delta > 0$ such that $0 < |x - a| < \delta \Rightarrow f(x) > N$.

Definition: $\lim_{x \to -\infty} f(x) = L$

Definition: $\lim_{x \to a} f(x) = -\infty$

Definition: $\lim_{x\to\infty} f(x) = \infty$

Definition: $\lim_{x \to \infty} f(x) = -\infty$

Definition: $\lim_{x \to -\infty} f(x) = \infty$

Definition: $\lim_{x \to -\infty} f(x) = -\infty$

One-sided definitions:

Definition: $\lim_{x \to a^+} f(x) = L$

Definition: $\lim_{x \to a^-} f(x) = L$

Definition: $\lim_{x \to a^+} f(x) = \infty$

Definition: $\lim_{x\to a^-} f(x) = \infty$