AP Calculus BC

Lesson 4.3 How derivatives affect the shape of the graph

- 1. Given the function $f(x) = x^3 9x^2 + 15x + 6$
 - a) Draw the graph of *f* on your calculator. Adjust the window to get a "good" picture
 - b) On what intervals is the derivative of *f* positive? negative?

- c) Use the tangent feature on your calculator to draw tangent lines to the graph at the points where x = -2, -1, 0, 1, and 2
- d) On [-2, 2], is the derivative of f increasing or decreasing or neither? What evidence do you have? What is the shape of the graph of f on the interval [-2, 2]?
- e) On [4, 7], is the derivative of f increasing or decreasing or neither? What evidence do you have? What is the shape of the graph of f on the interval [4, 7]?
- f) Draw the tangent line at x = 3. What is the behavior of the graph of f at x = 3.
- g) On what intervals is the derivative of f increasing? Decreasing?
- h) Using the information in b) and g), draw a sketch of the derivative of f. Then calculate the derivative of f and compare it to the sketch you made.

- 2. Given $f'(x) = x^2 + 2x 8$
 - a) Given f(2) = 0, write an equation for the line tangent to the graph of *f* at the point (2, 0).

- b) Which is larger: f(-4) or f(2)? Why? Find upper and lower bounds on the quantity f(2) - f(-4).
- c) What is the behavior of the graph at x = -4? At x = -2? How do you know?
- d) On what intervals is *f* increasing? Decreasing?
- e) What happens on the graph of f at x = -1?
- 3. Given the graph of a function f(x)
 - a) Which of the labeled points are stationary points?
 Local maximums?
 Local minimums?
 Inflection points?
 - b) On what interval(s) is f increasing? Decreasing? Concave up? Concave down?

- c) For each of the labeled points, indicate whether f'(x) is positive, negative, or zero.
- d) On what interval(s) is f'(x) positive? Negative?
- e) On what interval(s) is f'(x) increasing? Decreasing?
- f) On what interval(s) is f''(x) positive? Negative?

4. Given the graph of f'(x) at right:

Use lowercase letters to indicate the x-coordinates of the labeled points.

- a) Explain what is happening on the graph of *f* at each of the labeled points.
- b) On what interval(s) is f increasing? decreasing? Why?

- c) On what intervals is f concave up? Concave down? Why?
- d) On what interval(s) is f''(x) positive? Negative?
- 5. Suppose that you have the following information about a point (a, f(a)) on the graph of a continuous function f(x). What can you conclude?

(a) f'(a) = 0

- (b) f'(a) = 0, and f'(x) < 0 on (b,a) and f'(x) > 0 on (a,c), where b < a < c
- (c) f'(a) = 0 and f'(a) > 0
- (d) f'(a) = 0 and f'(a) < 0
- (e) f'(a) = 0
- (f) f'(a) = 0, and f'(x) < 0 on (b,a) and f'(x) > 0 on (a,c), where b < a < c

6.	Given the following information abo	out $f(x)$, which is continuous on [-3]	,3].
----	-------------------------------------	--	------

x	(-3,-2)	-2	(-2,-1)	-1	(-1,1)	1	(1,2)	2	(2,3)
f	+	4	+	3	+	0	_	-2	_
<i>f</i> ′	+	DNE	_	0	_	_	_	0	+
f ''	+	DNE	+	0	_	0	+	+	+

(a) Find the *x*-coordinate(s) of each maximum or minimum of f(x). Justify your answer.

- (b) Find the x-coordinate(s) of any inflection points of f(x). Justify your answer.
- (c) On what interval(s) is the graph of f(x) increasing and concave up?
- (d) Sketch a graph of f.