AP Calculus BC

Lesson 5.3 day 2 The Fundamental Theorem of Calculus

1. Find
$$\frac{dy}{dx}$$
 for each function given:
a) $y = \int_{2}^{x} \sin t \, dt$ b) $y = \int_{x}^{3x} t \, dt$ c) $y = \int_{x^{2}}^{\sin x} \frac{1}{t^{2}} dt$

2. Evaluate each indefinite integral:

a)
$$\int (x^2 + 2x) dx$$
 b) $\int \sin x \, dx$ c) $\int \sqrt{x + 2} \, dx$

d)
$$\int \sin x \cos x \, dx$$
 e) $\int \tan^3 x \sec^2 x \, dx$ f) $\int \frac{1}{2x} \, dx$

3. Evaluate each definite integral:

a)
$$\int_0^{\pi/2} \cos x \, dx$$
 b) $\int_1^3 (4-x) dx$

c)
$$\int_{-2}^{2} \sqrt{4-x^2}$$
 d) $\int_{0}^{a} x(1+x^2)^3 dx$

4. Solve for a if $\int_{a}^{2a} (5-2x) dx = 15$

5. [1996AB2] Let *R* be the region in the first quadrant under the graph of $y = \frac{1}{\sqrt{x}}$ for $4 \le x \le 9$.

- a) Find the area of *R*.
- b) If the line x = k divides the region R into two regions of equal area, what is the value of k?

- 6. [1997AB3] Let f be the function given by $y = \sqrt{x-3}$.
 - a) Sketch the graph of f and shade the region R enclosed by the graph of f, the *x*-axis, and the vertical line x = 6.
 - b) Find the area of the region R described in part a).
 - c) Rather than using the line x = 6 as in part a), consider the line x = w, where w can be any number greater than 3. Let A(w) be the area of the region enclosed by the graph of f, the x-axis, and the vertical line x = w. Write an integral expression for A(w).
 - d) Let A(w) be as described in part c). Find the rate of change of A with respect to w when w = 6.