AP Calculus BC Lessons 6.3 Volume using cylindrical shells

- 1. The region in the first quadrant bounded by the parabola $y = x^2$, the y-axis, and the line y = 4 is revolved around the x-axis.
 - (a) Find the volume of the solid generated by using washers.

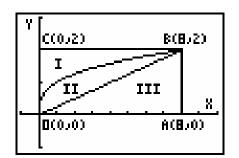
(b) Find the volume of the solid generated by using cylindrical shells.

2. A solid is obtained by rotating around the *y*-axis the region between y = x and the parabola $y = x^2$. Find the volume using cylindrical shells.

3. The region bounded by y = x, y = 0, x = 2, and x = 4 is revolved about the line x = 1. Find the volume of the solid generated.

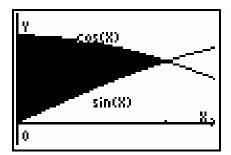
4. Each integral represents the volume of a solid. Describe the solid.

$$1. \quad \pi \int_0^{\pi/4} \tan^2 x \ dx$$


$$2. \quad \pi \int_0^1 (y - y^2) dy$$

3.
$$\pi \int_{2}^{4} [16 - (x - 2)^{2}] dx$$

5. The region in the first quadrant bounded by the parabola $y = x^2$, the y-axis, and the line y = 1 is revolved about the line x = 2 to generate a solid. Find the volume of the solid.


6. Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = x(x-1)^2$ and y = 0.

7. The curve separating regions I and II is the graph of $y = \sqrt[3]{x}$. For each of the following find the volume generated by revolving the given region about the given line.

- (a) III about \overline{OA} (b) III about \overline{AB}
- (c) I about \overline{AB} (d) III about \overline{BC}
- (e) II about \overline{OA} (f) II about \overline{OC}
- (g) II about \overline{BC} (h) II about \overline{AB}
- (i) I about \overline{OA} (j) I about \overline{OC}
- (k) I about \overline{BC} (l) I about \overline{AB}
- (m) II about y = 4 (n) II about x = 4

8. (1991BC3) Let *R* be the shaded in the first quadrant enclosed by the *y*-axis and the graphs of $y = \sin x$ and $y = \cos x$, as shown in the figure below.

(a) Find the area of R.

(b) Find the volume of the solid generated when R is revolved about the x-axis.

(c) Find the volume of the solid whose base is *R* and whose cross sections cut by planes perpendicular to the *x*-axis are squares.

- 9. (1981AB2) Let *R* be the region in the **first quadrant** enclosed by the graphs of $y = 4x^2$, y = 3x, and the *y*-axis.
 - (a) Find the area of region R.
 - (b) Find the volume of the solid formed by revolving the region *R* about the *x*-axis.

- 10. (1989AB2) Let *R* be the region in the first quadrant enclosed by the graph of $y = \sqrt{6x+4}$, the line y = 2x, and the *y*-axis.
 - (a) Find the area of R.
 - (b) Set up, but **DO NOT INTEGRATE**, an integral expression in terms of a single variable for the volume of the solid generated when *R* is revolved about the *x*-axis.
 - (c) Set up, but **DO NOT INTEGRATE**, an integral expression in terms of a single variable for the volume of the solid generated when *R* is revolved about the *y*-axis.