AP Calculus BC Lesson 6.5 Average Value

Remember that the average value of a function f(x) on the interval [a, b] is given by $\frac{\int_{a}^{b} f(x)dx}{b-a}$

1. a. Find the average value of the function $f(x) = \sqrt{x}$ on the interval from x = 4 to x = 9.

b. Find a value c such that $4 \le c \le 9$ and f(c) is equal to the average value of the function found in part a.

2. Find the average value of the slope of $f(x) = x^2 + 3x + 2$ on the interval from x = 0 to x = 3.

- 3. (1980BC6,modified) Let *R* be the region enclosed by the graphs of $y = e^{-x}$, x = k (k > 0), and the coordinate axes.
 - (a) Find the volume, in terms of k, of the solid generated if R is rotated about the <u>y-axis</u>.

(b) Find the volume, in terms of *k*, of the solid whose base is *R* and whose cross sections perpendicular to the *x*-axis are squares.

- 4. Let *R* be the region enclosed by the graphs of $y = e^{-x}$, $y = e^{x}$, and $x = \ln(4)$.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when the region R is revolved about the <u>x-axis</u>.

(c) Find the volume of the solid generated when the region *R* is revolved about the <u>y-axis</u>.

- 5. (1988BC2) Let *R* be the region between the graphs of $y = \frac{3}{x}$ and $y = \frac{3x}{x^2 + 1}$ from x = 1 to $x = \sqrt{3}$, as shown in the figure at right.
 - (a) Find the area of R.

(b) Find the volume of the solid generated by revolving *R* about the <u>y-axis</u>.