AP Calculus BC Lesson 8.1 - Integration by Parts

Notes: From the product rule for derivatives, if u and v are differentiable functions of x then

 $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$. Considering these as differentials and multiplying through by dx and rearranging yields udv = d(uv) - vdu and finally integrating both sides gives us the integration by parts formula $\int udv = uv - \int vdu$, which can be used to evaluate more complicated integrals. O

8.1(1) Use two methods to antidifferentiate the following:

a)
$$\int x \cos(x) dx$$

b)
$$\int xe^x dx$$

c)
$$\int x^2 e^x dx$$

d)
$$\int x \sec^2(x) dx$$

e)
$$\int \tan^{-1}(x) dx$$

f)
$$\int x^3 e^{x^2} dx$$

8.1(2) Use integration by parts to evaluate the integral obtained for the following problem.

Find the volume of the solid formed by revolving about the y-axis the region in the first quadrant bounded by the coordinate axes, the curve $y = e^{-x}$ and the line x = 1.

8.1(3) Show by using integration by parts that $\int \tan^n(x) dx = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x) dx$

8.1(4) If
$$\int f(x)\sin(x)dx = -f(x)\cos(x) + \int 3x^2\cos(x)dx$$
, then $f(x)$ could be

- a) $3x^2$ b) x^3 c) $-x^3$ d) sin(x) e) cos(x)
- 8.1(5) Use two methods to evaluate each of the following:
 - a) $\int e^x \cos(x) dx$
 - b) $\int \cos(\sqrt{x}) dx$

c)
$$\int x^2 \sin(3x) dx$$

- d) $\int e^{3x} \sin(4x) dx$
- e) $\int e^{-x} \cos(x) dx$

8.1(6) Show by using integration by parts that $\int (\ln(x))^n dx = x (\ln(x))^n - n \int (\ln(x))^{n-1} dx.$

8.1(7) Find the volume of the solid described: Its base is bounded by the graphs of $y = \sin x$ and y = 0 from $0 \le x \le \pi$, and cross sections perpendicular to the x-axis are rectangles with height given by $y = e^x$.

8.1(8) More Practice Problems!! Evaluate the integral without using a calculator:

a)
$$\int \sin(\ln x) dx$$

b) $\int \ln x dx$
c) $\int \log_2 x dx$
d) $\int x^3 \cos x dx$
e) $\int x \ln x dx$
f) $\int e^{3x} \cos(2x) dx$

g) $\int x^n \ln x \, dx$ h) $\int \sin^{-1} x \, dx$

i) $\int \sin^6 x \, dx$ j) $\int \frac{\ln x}{x^5} \, dx$

k) $\int x \sec^2 x \, dx$ l) $\int \csc^{-1} x \, dx$