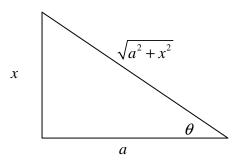
AP Calculus BC Lesson 8.3 Trigonometric Substitutions

Today we consider a way to substitute trigonometric functions in order to help us integrate functions containing terms of the form $(a^2 + x^2)^n$, $(a^2 - x^2)^n$, and $(x^2 - a^2)^n$, where *a* is a constant and *n* is a rational exponent.

Case I: Integrals containing $(a^2 + x^2)^n$:

We substitute for each x, $x = a \tan(\theta)$, which would make $dx = a \sec^2(\theta) d\theta$. We will also use the following reference triangle.



Example: $\int \frac{dx}{\sqrt{4+x^2}}$

We substitute $x = 2\tan(\theta)$ and $dx = 2\sec^2(\theta)d\theta$ to obtain

$$\int \frac{dx}{\sqrt{4+x^2}} = \int \frac{2\sec^2(\theta)d\theta}{\sqrt{4+4\tan^2(\theta)}} = \int \frac{2\sec^2(\theta)d\theta}{2\sec(\theta)} = \int \sec(\theta)d\theta$$
$$= \ln|\sec(\theta) + \tan(\theta)| + C$$

(The last equality is valid because the derivative of the right hand side is $sec(\theta)$.) We now use our reference triangle to get back to a function of x instead of θ .

$$\int \frac{dx}{\sqrt{4+x^2}} = \ln \left| \frac{\sqrt{4+x^2}}{2} + \frac{x}{2} \right| + C$$

Compare this to the TI-89 answer of $\ln \left| \sqrt{x^2 + 4} + x \right|$

Note:
$$\ln \left| \frac{\sqrt{4+x^2}}{2} + \frac{x}{2} \right| = \ln \left| \frac{1}{2} \left(\sqrt{4+x^2} + x \right) \right| = \ln \frac{1}{2} + \ln \left| \left(\sqrt{4+x^2} + x \right) \right|$$

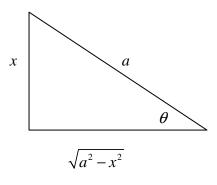
Note: It would be helpful if you remember the following.

(1)
$$\int \sec(\theta) d\theta = \ln \left| \sec(\theta) + \tan(\theta) \right| + C$$

(2)
$$\int \csc(\theta) d\theta = \ln \left| \csc(\theta) - \cot(\theta) \right| + C$$

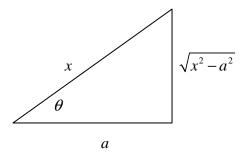
Case II: Integrals containing $(a^2 - x^2)^n$:

We substitute for each x, $x = a \sin(\theta)$, which would make $dx = a \cos(\theta) d\theta$. We will also use the following reference triangle.



Case III: Integrals containing $(x^2 - a^2)^n$ **:**

We substitute for each x, $x = a \sec(\theta)$, which would make $dx = a \sec(\theta) \tan(\theta) d\theta$. We will also use the following reference triangle.



8.3(1) Use a trigonometric substitution to integrate each of the following: Check with technology.

$$1. \quad \int \frac{x^2 dx}{\sqrt{9 - x^2}}$$

$$2. \quad \int \frac{dx}{4+x^2}$$

$$3. \quad \int \sqrt{25 - x^2} \, dx$$

$$4. \quad \int \frac{dx}{\sqrt{1-4x^2}}$$

$$5. \int \frac{3dx}{\sqrt{9x^2 - 1}}$$

6.
$$\int \frac{dx}{\sqrt{x^2 - 25}}$$
Check carefully against the TI-89

7.
$$\int \frac{4x^2 dx}{\left(1-x^2\right)^{3/2}}$$
you ARE smarter than your calculator! \textcircled{O}

8.3(2) Sometimes before making a trigonometric substitution it pays to complete the square and then make a traditional u-substitution.

1.
$$\int \frac{dx}{\sqrt{x^2 - 2x}}$$

$$2. \quad \int \frac{(x-1)dx}{\sqrt{2x-x^2}}$$

3.
$$\int_{1}^{4} \frac{dy}{y^2 - 2y + 10}$$

A final note: Two of these integral types occur so often that it is a good idea to know them. These are the following:

$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \left(\frac{u}{a} \right) + C$$