
Multivariable Calculus 
Review Problems — Chapter 13 
 

Things to Know and Be Able to Do 
 Understand, and analyze equations of surfaces and curves in two and three dimensions given parametrically 
 Work with scalar and vector projections, understanding what they mean and how they can be used 
 Use Cartesian, cylindrical, and spherical coordinates and convert both points and surfaces between them 
 Analyze the relationships between figures in two- and three-dimensional space 

 

Practice Problems 
These problems should be done without a calculator. The original test, of course, required that you show relevant work. 
1 Write equations or inequalities to describe the following loci: 
 1a the interior of the sphere with radius 4 centered at ( )2,4, 1−  

 1b the plane through ( )3,5,2  that is perpendicular to the x-axis 

 1c the circle with radius 2 centered at ( )1,3,2  lying in the plane 3y =  

 1d the set of points in space equidistant from the origin and ( )0,2,4  

 1e the set of points in space equidistant from ( )0,0,4  and the plane 2z = −  
 

2 Find the equation of the line of intersection of the planes 4 3 2x y z− + =  and 2 5 3 4.x y z+ − = −  
 

3 Given the three points ( )0, 1,2 ,A = −  ( )2, 3,1 ,B = −  and ( )2,4, 1 ,C = − −  do the following, giving exact answers: 
 3a Find parametric equations for the line that passes through A and C 

 3b Find the scalar projection of AC  onto AB.  
3c Write AC  as the sum of two vectors, one parallel to AB  and one perpendicular to AB.  

 3d Find the equation of the plane containing A, B, and C. 
 

4 Consider the point in spherical coordinates given by ( ) ( ), , 12,5π 4,π 3 .ρ θ ϕ =  Find the exact coordinates of this 

point in both rectangular and cylindrical coordinates. 
 

5 Change the equations for these surfaces into Cartesian coordinates, and give a brief description of the surface. 
5a π 2θ =  5b 4cscρ ϕ=  5c 4cosr θ=  

 

6 The equation of a surface in 3  is given in spherical coordinates by 8cosρ ϕ=  for 0,π 6 .ϕ∈⎡ ⎤⎣ ⎦  

 6a Give the equation in rectangular coordinates. Include restrictions on coordinates if necessary. 
 6b Give the equation in cylindrical coordinates. Include restrictions on coordinates if necessary. 
 6c Give a name or description of this surface. Be as specific as possible. 
 

7 Consider a point P on a line r determined by point S and direction vector v. Then ( )PS× ×v v  gives a vector along 
which the distance from P to r is measured. 

7a Explain geometrically or algebraically why the vector ( )PS× ×v v  is in the correct direction to measure the dis-
tance from the point to the line. 
7b Write a vector expression that represents the directed distance from P to r as a projection. 

 

Bonus Problem Show that the lines 
21 3

1 1 2
yx z−− −

= =  and 
21 3

1 1 2
yx z−− −

= =
− − −

 lie entirely on the surface of the 

hyperbolic paraboloid given by 2 2 .z y x= −  



Answers 

1a ( ) ( ) ( )22 22 4 1 16x y z− + − + + <  

1b 3x =  
1c 

( ) ( )2 21 2 4

3

x z
y

⎧ − + − =⎪
⎨

=⎪⎩
 

1d 2 5y z+ =  

1e 2 2 12 12 0x y z+ − + =  

2 answers may vary; the line’s direction vector is parallel to 2,7,13  

3a answers may vary; the line’s direction vector is parallel to 2,5, 3− −  

3b 11 3−     3c 22 9,22 9,11 9 4 9,23 9, 38 9− + −     3d 11 8 6 4x y z+ + =  

4 ( )6 3,5π 4,6  and ( )3 6, 3 6,6− −  

5a 0,x =  which is the yz-plane for positive y 
5b 2 2 16,x y+ =  a right circular cylinder centered about the z-axis with radius 4 

5c ( )2 22 4,x y− + =  a right circular cylinder tangent to the z-axis with radius 2 

6a 2 2 2 8x y z z+ + =  for 6z ≥  

6b 2 2 8r z z+ =  for 6z ≥  
6c part of a sphere centered at ( )0,0,4  with radius 4 

7b 
( )( )
( )

( )( )2

PS PS
PS

PS

× × ⋅
× ×

× ×

v v
v v

v v
 

 

Solutions 
1a–d These are essentially questions of rote. If you have trouble with them, please see your teacher. 

1e  Consider an arbitrary point ( ), , .x y z  That point’s distance from ( )0,0,4  is given by ( )22 2 4 .x y z+ + −  Since 

the formula for the distance D between a point ( )0 0 0, ,x y z  and a plane given by 0ax by cz d+ + + =  is 

0 0 0

2 2 2
,

ax by cz d
D

a b c

+ + +
=

+ +
 the distance from our arbitrary ( ), ,x y z to the given plane is 

2 2 2

0 0 2
2 .

0 0 1

x y z
z

+ + +
= +

+ +
 

This means that we are interested in ( )22 2 4 2 .x y z z+ + − = +  Squaring both sides yields ( )22 2 4x y z+ + −  
2 4 4,z z= + +  which can be rewritten as 2 2 12 12 0.x y z+ − + =  

 
2 The planes’ normal vectors are, respectively, 1 4, 3,1= −n  and 2 2,5, 3 .= −n  The line of intersection has a direc-

tion vector perpendicular to both of these, which we can find by taking 1 2 4,14,26 .× =n n  It is equivalent to 

state that as 2,7,13  (dividing by two). Now it only remains to find a point shared by both planes. We can 

choose 0z =  to get the system 
( )

4 3 0 2

2 4 3 0 4

x y

x y

− + =⎧
⎨ + − = −⎩

 which solves to ( ) ( ), , 2 11, 10 11,0 ,x y z = − −  which is a 

point on the line of intersection. Combining that with the line’s known direction vector means that the line can be 
given as , , 2 11, 10 11,0 2,7,13 .x y z t= − − +  

 
3a AC  is given by ( ) ( )2,4, 1 0, 1,2 2,5, 3 .C A− = − − − − = − −  We must now find a point on that line; it is most con-

venient to use either A or C. Using A yields ( ), , 0, 1,2 2,5, 3 .x y z t= − + − −  

3b Recall that the scalar projection of some b onto some a is comp .
⋅

=a

a b
b

a
 AC  is given by 2,5, 3 ,− −  as we saw in 

3a, and AB  is similarly given by 2, 2, 1 .− −  Its magnitude is ( )22 2AB 2 2 1 9 3.= + − + = =  

( ) ( )( ) ( )( )AB AC 2 2 2 5 1 3 11,⋅ = − + − + − − = −  so 
AB

11
comp AC .

3
−

=  



3c The part parallel to AB  is the projection of AC  onto AB , which is given by ( )AB AB

AB
proj AC comp AC .

AB
=  

This is 
2, 2, 111 11

2, 2, 1 22 9,22 9,11 9 .
3 3 9

− −⎛ ⎞− = − − − = −⎜ ⎟
⎝ ⎠

 The part perpendicular to AB  can be found 

simply by subtracting the already-found part from AC  since the two add to AC:  this is 2,5, 3− −  

22 9,22 9,11 9− −  4 9,23 9, 38 9 .= −  So AC  can be written as 22 9,22 9,11 9 4 9,23 9, 38 9 .− + −  

3d Consider AB  and AC . The normal vector to the plane is normal to both of these vectors, so it can be found by 

taking their cross product: AB AC 11,8,6 .× =  Therefore the plane is given by 11 8 6x y z d+ + =  for some d; to 

find it, plug in the point A which must be contained within the plane: ( ) ( ) ( )11 0 8 1 6 2 4.d d+ − + = ⇒ =  So the 
plane we are looking for is 11 8 6 4.x y z+ + =  

 
4 A diagram is vital for this problem! Draw a diagram and you will find that sin cos ,x ρ ϕ θ=  sin sin ,y ρ ϕ θ=  and 

cos .z ρ ϕ=  The Cartesian coordinates are therefore given by ( ) ( )π 5π π 5π π
3 4 3 4 3, , 12sin cos ,12sin sin ,12cosx y z =  

( )3 6, 3 6,6 .= − − Now it is probably easiest to convert these Cartesian coordinates into cylindrical; remember 

that the z-coordinates are the same, and the polar -coordinateθ  is the same as the spherical -coordinate.θ  There-

fore we already have ( ),5π 4 ,6r  for the cylindrical coordinates, and ( ) ( )2 22 2 3 6 3 6r x y= + = − + −  

54 54 108 6 3.= + = =   So the cylindrical coordinates are  ( ) ( ), , 6 3,5π 4,6 .r zθ =  

 
5a This too is essentially a question of rote. If you have trouble with it, please see your teacher. 

5b Write this as 
4

,
sin

ρ
ϕ

=  so sin 4.ρ ϕ =  Since sin rρ ϕ =  (you need a diagram!), this means that 4.r =  This 

should be recognizable as a right circular cylinder centered about the z-axis with radius 4. To put it into Cartesian 

coordinates, 2 2 4x y+ =  or 2 2 16.x y+ =  

5c Multiply both sides by r to get 2 4 cos .r r θ=  This means 2 2 4 ,x y x+ =  on which we can complete the square: 
2 24 4 4x x y− + + =  so ( )2 22 4.x y− + =  Since z is not involved in the equation, it can be anything; treat this if 

you like as an equation in 2  and then “slide it up and down”; it’s a circle that gets slid to become a right circular 
cylinder. Its radius is 4 2,=  and since it is centered at ( )2,0, ,z z∀  it is tangent to the z-axis. 

 
6a Multiply both sides by :ρ  2 8 cos ,ρ ρ ϕ=  and as we have previously 

noted, cos .zρ ϕ =  Also, 2 2 2 2 .x y zρ = + +  Thus 2 2 2 8 .x y z z+ + =  
A diagram showing the restrictions is included at right. From the ϕ  
restriction, we get that 6.z ≥  

6b Since 2 2 2 ,r x y= +  this is 2 2 8 ,r z z+ =  and the restriction 6z ≥  still 
holds. 

6c The diagram is shown at right; this is a portion of a sphere. Complet-
ing the square from the Cartesian equation gives ( )22 2 4x y z+ + −  

24 ,=  so the sphere’s center is ( )0,0,4  and its radius is 4. 
 



7a Note that PS× v  is perpendicular to both PS  and v, and ( )PS× ×v v  is perpendicular to both ( )PS× v  and v. 

Thus PS  and ( )PS× ×v v  determine a plane perpendicular to r that contains P, and thus the perpendicular line 

from P to r is in that plane. Draw a diagram of the situation to convince yourself of this. 

7b The directed distance in question is given by ( )PS
proj PS ,

× ×
=

v v
d  which is 

( )( )
( )

( )( )2

PS PS
PS .
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× × ⋅
× ×

× ×

v v
v v

v v
 

Bonus Problem These lines can be written parametrically as ( )1 : , , 1,2,3 1,1,2x y z t= +  and 2 : , ,x y z  

( ) ( )1,2,3 1, 1, 2 ,t= + − − −  respectively. Now we plug each of these in turn into the hyperbolic paraboloid’s equa-

tion: for 1 ,  ( ) ( )2 23 2 2 1 ,t t t+ = + − +  and for 2 ,  ( ) ( )2 23 2 2 1 .t t t− = − − −  Expanding the first one, 

( ) ( )2 23 2 4 4 1 2 ,t t t t t+ = + + − + +  or 3 2 3 2 ,t t+ = +  which is a true statement. Therefore this line lies entirely on 

the hyperbolic paraboloid. Similarly, expansion of the second gives ( ) ( )2 23 2 4 4 1 2 ,t t t t t− = − + − − +  or 

3 2 3 2 .t t− = −  This, too, is true, so the second line also lies entirely on the surface of the paraboloid. 


