Multivariable Calculus
Review Problems — Chapter 14

Things to Know and Be Able to Do

» Analyze curves in R’ given by vector-valued functions, finding their shape, value, tangent vector function,
normal vector function, binormal vector function, arc length, curvature, torsion, osculating circle, derivatives,
integral

» Parameterize space curves in terms of arc length (and otherwise) and know why this is useful

» Understand the meaning of velocity, acceleration, and their components with respect to space curves

» Determine the intersections of surfaces in terms of space curves

Practice Problems
You may use a calculator to evaluate derivatives and integrals and simplify expressions. The original test, of course, required
that you show relevant work.

1 Find parametric equations for the line tangent to the curve r(t)= ei+ (sint)j' +In(1- t)k at t=0.

2 Find the point on the curve r(t) = (5 sint)i + (5 cost)} +12¢k at a distance of 137:/4 along the curve from the origin
in the direction of increasing arc length.

A

3 Consider the curve r(t) —fi+ (t3 +3¢% — 24t)J.

3a Find the velocity and acceleration functions v(t) and a(t) for this vector-valued function.
3b Find the speed of the particle at t =2.

3¢ Give the unit tangent vector and unit normal vector at t =2.

3d Find the curvature x at t=2.

3e Find a,, the scalar component of acceleration in the direction of the tangent, at ¢t =2.

4 Find the equation for the osculating circle of the ellipse xz/ 9+y° /25:1 at the S
point (0,—5) and draw the osculating circle on the graph given. (Hint: write the el- //‘\
lipse in parametric form first. The osculating circle has the same curvature, tangent 1 \
vector, and normal vector at the point.) / \
5 Consider the curve r(t) = <3cosh(2t),35inh(2t),6t>. Find each of the following at { 1 \
the point where t=1n2: , A ' ' I--
5a the unit tangent vector T 5¢ the unit binormal vector B - \ i 1 } | .
5b the unit normal vector N 5d the curvature & \ "z /
xl y' z' h 1 }
” " " B
zZ \/
m m z"’ .
5e the torsion 7, using the formula 7=—"——— =

2
[v><al



dB

6 Although we use a different formula most of the time, torsion 7 is defined by 7 =——"N, where s is the parame-
s

ter for arc length.

6a Show that B =Tx d—N (Hint: start with a definition for B and differentiate.)

s ds
6b Explain why Z—B IN.
s

6¢ Explain why the torsion of a plane curve must be zero.

7 The curve with parametric equations <x, y,z> = <sin t,cost,sin’ t> is the curve of intersection of a circular cylinder

and a parabolic cylinder. Find Cartesian equations for the cylinders and use these equations to draw the curve.



Answers

1 (x,52)=(1,0,0)+(1,1,-1)t 4 x> +(y+16/5) =(9/5)"

2 (5/<2,5/2,37) 5a T =(15v2/34,1/2,42/17)

3a v(t)=(1,3t" +6t-24); a(t)=(0,6t+6) 5b N =(8/17,0,-15/17)

3b [v(2)]=1 3¢ T=(10); N=(0,1)  5c B=(-15v2/34,1/2,~4+2/17)

3d x(2)=18 3e a; =0 5d K =32/867 5 7=32/867

7 x*+y"=1and z=x

Solutions

1 We evaluate r(O) = <e0,sin 0, 1n1> = <1, 0,0>, which we will use as a point on our line. Finding the tangent line re-

quires differentiating r(t) to get r'(t) =<et,cost,—1i>, which at t=0 is r'(O) = <e0,c050,—ﬁ> = <1,1,—1>,
_t —

which is a direction vector for the tangent line. Thus the line is <x, y,z> = (1, 0,0) + <1, 1,—1> t.

2 Recall that arc length s is given by s(t) = I t”r'( u)”du. Therefore we first evaluate ”r'( u)” (we are using u because ¢ is

needed as the upper limit of the integral. This requires finding r'(u) = <5 cost,—5sin t,12>, of which the magni-

tude is y/(5cost)’ +(—5sint)’ +127 =/25cos” t+25sin’ t + 144 = [25(1) + 144 =~/169 = 13. Since we want to
solve for the point at which the arc length is a known value, we set J:13du=137c/4, or 13u]; =13Tc/4, SO

13t = 1311/4 and t= 7(/4. We still have to find the point, so we evaluate r(a'c/4) = <5/\/5,5/\/5,37c>.

3a Since v(t) = r'(t), we differentiate each component: v(t) = <1,3t2 +6t— 24>, Similarly, a(t) = v(t) = r"(t), so we
differentiate each component again to get a(t) = <0,6t + 6>.
3b Speed is given by ”v(t) , so we evaluate v(2) = <1,3(2)2 + 6(2) - 24> = <1,0>; the magnitude of that is 1.
A . v(t)

3c The unit tangent vector T is given by T(t)=” ()
vit

\/12 +(3¢ +6t—24) =/9¢" +36¢ 108> ~288¢+577 whichat t=2 is 1.So T(2)= <1’10> =(1,0).

e/ (6) 2" (2 _ 0,0,6¢+6))|
[ (9¢ +36¢ ~108¢ —288¢+577)

, so we must find ”v(t)” This is

3d The curvature x is given by K(t) = which at t=2 is 18.

3

3e By definition, a, zdi”v , which is di(\/9t4 +36t> —108¢” —288t+577). This is easier than it looks to do by
t t

3 2
hand, but can be evaluated by your calculator also as 18" +54¢ —108¢ 144 , whichat t=2 is 0.

Vo' +366 —108¢% —288¢+577

4 The ellipse can be parameterized as r(t)=<3cost,5sint>, in which case the point (O,—S) is at t:37c/2.
) ”r'(t)xr"(t)” ||<—3sint,5cost>><<3cost,—5sint>”

K = =
||r'(t)||3 |<—35int,5cost>|3

K= 5/ 9. Since the radius of the osculating circle is the reciprocal of the curvature, r = 9/ 5. The circle is known to

. It is simplest to evaluate this by calculator; at ¢t = 37:/ 2,




touch (0, —5) at its bottom, so knowing its radius also allows us to determine that 4

the y-coordinate of the osculating circle’s center is —16/ 5. Since the curve is /"- .“\
symmetric about the y-axis, so must be the osculating circle, and thus its center 4 h
has x-coordinate 0. To recapitulate, the circle has radius 9/ 5 and is centered at / . 1 \

(0,—16/5), meaning that its equation is x4 (y + 16/5)2 = (9/5)2 . The picture is ( -

shown at right.

! A 6sinh(2t),6cosh(2t),6
r,(t) , which means that T(t):< o ( t) cos ( t) >
||r (t) 6\/§cosh(2t)

_ <tan3§2t))%f“3§2t)>. At t=1In2 thisis <15J§/34,1/J5 ,4\/5/17>’

5b Since N(t): ”¥:E:; , we have IQI(t):
at t=In2 is (8/17,0,-15/17).

5¢ Since fi(t)z'i'(t)XN(t), we can easily determine that ﬁ(an) =<15\/§/34,1/\/5,4\/§/17>><<8/17,0,—15/17>
=(-15V2/34,1/V2,~4\2/17).

5a Again, 'f(t):

<\/§ sech? (2t),0, —\/5 sech(2t)tanh(2t)> h

= h(2t),0,—tanh(2¢ hich
\/Esech(Zt) <S€C ( ) an ( )> wiic

[T (0]

(1))

\/Esech(Zt) 3 1

6\/§cosh(2t) ~ 6cosh’ (2t)

45/4 51/4 6

51/2 452 0

45 51 0 1728 32
(153\/5)2 46818 867

5d Another curvature formula is K(t) = We have already found each of these, so this is the most convenient

which at t=1n2 is 32/867.

formula to use; it gives K(t) =

5e Plugging in everything to the given formula gives 7 =

6a Begin with B=T xN. Then d—B = di(T X N) =T x d—N + ii—T xN by the product rule. According to the Frenet-
s s

s s
) T : .
Serret formulas (page 906 of Stewart’s textbook), d—zl(N, so we can substitute in the second term:
s

dB dN

— =T x—+xkNxN. Since the cross product of any vector with itself is always the zero vector, the second

ds ds
dN

term is the zero vector and — =T x d—, which is what we wanted.
s s

6b It can be shown (exercise 49, section 14.3) that T L Z—B 1 B. Any vector perpendicular to both must be parallel to

S

N because B=T xN.

A . , . dB . dB
6¢ Since B is a constant unit vector perpendicular to the plane containing the curve, = 0, but since = —7N by
s s

the Frenet-Serret formulas, we know —7N =0. This means that either 7=0 or N =0, the latter of which we
know not to be the case. Therefore 7=0.



7 From the x- and y-components of the curve, the projection of the
curve onto the yz-plane is an origin-centered circle with radius
1. This suggests that the right circular cylinder is given by
x* +y*> =1. Note also that z=x". This is the other cylinder.

The cylinders and the curve are shown at right.




