
Multivariable Calculus 
Review Problems — Chapter 14 
 
Things to Know and Be Able to Do 

 Analyze curves in 3  given by vector-valued functions, finding their shape, value, tangent vector function, 
normal vector function, binormal vector function, arc length, curvature, torsion, osculating circle, derivatives, 
integral 

 Parameterize space curves in terms of arc length (and otherwise) and know why this is useful 
 Understand the meaning of velocity, acceleration, and their components with respect to space curves 
 Determine the intersections of surfaces in terms of space curves 

 

Practice Problems 
You may use a calculator to evaluate derivatives and integrals and simplify expressions. The original test, of course, required 
that you show relevant work. 
1 Find parametric equations for the line tangent to the curve ( ) ( ) ( ) ˆˆ ˆsin ln 1tt e t t= + + −r i j k  at 0.t =  
 
2 Find the point on the curve ( ) ( ) ( ) ˆˆ ˆ5sin 5cos 12t t t t= + +r i j k  at a distance of 13π 4  along the curve from the origin 
in the direction of increasing arc length. 
 

3 Consider the curve ( ) ( )3 2ˆ ˆ3 24 .t t t t t= + + −r i j  

 3a Find the velocity and acceleration functions ( )tv  and ( )ta  for this vector-valued function. 
 3b Find the speed of the particle at 2.t =  
 3c Give the unit tangent vector and unit normal vector at 2.t =  
 3d Find the curvature κ  at 2.t =  
 3e Find ,Ta  the scalar component of acceleration in the direction of the tangent, at 2.t =  
 
4 Find the equation for the osculating circle of the ellipse 2 29 25 1x y+ =  at the 

point ( )0, 5−  and draw the osculating circle on the graph given. (Hint: write the el-
lipse in parametric form first. The osculating circle has the same curvature, tangent 
vector, and normal vector at the point.)  

 
5 Consider the curve ( ) ( ) ( )3cosh 2 ,3sinh 2 ,6 .t t t t=r  Find each of the following at 

the point where ln2:t =  
5a the unit tangent vector T̂   
5b the unit normal vector N̂  

5c the unit binormal vector B̂  
5d the curvature κ  

 5e the torsion ,τ  using the formula 2
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6 Although we use a different formula most of the time, torsion τ  is defined by ,
d
ds

τ = − ⋅
B

N  where s is the parame-

ter for arc length. 

 6a Show that .
d d
ds ds

= ×
B N

T  (Hint: start with a definition for B and differentiate.) 

 6b Explain why .
d
ds
B

N  

 6c Explain why the torsion of a plane curve must be zero. 
 
7 The curve with parametric equations 2, , sin ,cos ,sinx y z t t t=  is the curve of intersection of a circular cylinder 

and a parabolic cylinder. Find Cartesian equations for the cylinders and use these equations to draw the curve. 



Answers 
1 ( ), , 1,0,0 1,1, 1x y z t= + −  

2 ( )5 2 ,5 2 ,3π  

3a ( ) 21,3 6 24 ;t t t= + −v  ( ) 0,6 6t t= +a  

3b ( )2 1=v  3c ˆ 1,0 ;=T  ˆ 0,1=N  

3d ( )2 18κ =  3e 0Ta =  
 

4 ( ) ( )2 22 16 5 9 5x y+ + =  

5a ˆ 15 2 34,1 2 ,4 2 17=T  

5b ˆ 8 17,0, 15 17= −N  

5c ˆ 15 2 34,1 2 , 4 2 17= − −B  

5d 32 867κ =  5e 32 867τ =  

7 2 2 1x y+ =  and 2z x=  

 
Solutions 
1 We evaluate ( ) 00 ,sin0, ln1 1,0,0 ,e= =r  which we will use as a point on our line. Finding the tangent line re-

quires differentiating ( )tr  to get ( ) 1
,cos , ,

1
tt e t

t
′ = −

−
r  which at 0t =  is ( ) 0 1

0 ,cos0, 1,1, 1 ,
1 0

e′ = − = −
−

r  

which is a direction vector for the tangent line. Thus the line is ( ), , 1,0,0 1,1, 1 .x y z t= + −  
 

2 Recall that arc length s is given by ( ) ( ) .
t

a
s t u du′= ∫ r  Therefore we first evaluate ( )u′r  (we are using u because t is 

needed as the upper limit of the integral. This requires finding ( ) 5cos , 5sin ,12 ,u t t′ = −r  of which the magni-

tude is ( ) ( ) ( )2 2 2 2 25cos 5sin 12 25cos 25sin 144 25 1 144 169 13.t t t t+ − + = + + = + = =  Since we want to 

solve for the point at which the arc length is a known value, we set 
0
13 13π 4,

t
du =∫  or ]013 13π 4,tu =  so 

13 13π 4t =  and π 4 .t =  We still have to find the point, so we evaluate ( )π 4 5 2 ,5 2 ,3π .=r  

 
3a Since ( ) ( ) ,t t′=v r  we differentiate each component: ( ) 21,3 6 24 .t t t= + −v  Similarly, ( ) ( ) ( ) ,t t t′′= =a v r  so we 

differentiate each component again to get ( ) 0,6 6 .t t= +a  

3b Speed is given by ( ) ,tv  so we evaluate ( ) ( ) ( )22 1,3 2 6 2 24 1,0 ;= + − =v  the magnitude of that is 1. 

3c The unit tangent vector T̂  is given by ( ) ( )
( )

ˆ ,
t

t
t

=
v

T
v

 so we must find ( ) .tv  This is 

( )22 2 4 3 21 3 6 24 9 36 108 288 577t t t t t t+ + − = + − − +  which at 2t =  is 1. So ( ) 1,0ˆ 2 1,0 .
1

= =T  

3d The curvature κ  is given by ( )
( ) ( )

( ) ( )3 3 24 3 2

0,0,6 6

9 36 108 288 577

t t t
t

t t t t t
κ

′ ′′× +
= =

′ + − − +

r r

r
 which at 2t =  is 18. 

3e By definition, ,T
d

a
dt

= v  which is ( )4 3 29 36 108 288 577 .
d

t t t t
dt

+ − − +  This is easier than it looks to do by 

hand, but can be evaluated by your calculator also as 
3 2

4 3 2

18 54 108 144
,

9 36 108 288 577

t t t

t t t t
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+ − − +
 which at 2t =  is 0. 

 
4 The ellipse can be parameterized as ( ) 3cos ,5sin ,t t t=r  in which case the point ( )0, 5−  is at 3π 2 .t =  

( )
( ) ( )

( ) 3 3

3sin ,5cos 3cos , 5sin
.

3sin ,5cos

t t t t t t
t

t tt
κ

′ ′′× − × −
= =

′ −

r r

r
 It is simplest to evaluate this by calculator; at 3π 2 ,t =  

5 9.κ =  Since the radius of the osculating circle is the reciprocal of the curvature, 9 5.r = The circle is known to 



touch ( )0, 5−  at its bottom, so knowing its radius also allows us to determine that 
the y-coordinate of the osculating circle’s center is 16 5.−  Since the curve is 
symmetric about the y-axis, so must be the osculating circle, and thus its center 
has x-coordinate 0. To recapitulate, the circle has radius 9 5  and is centered at 

( )0, 16 5 ,−  meaning that its equation is ( ) ( )2 22 16 5 9 5 .x y+ + =  The picture is 
shown at right. 

 

5a Again, ( ) ( )
( )

ˆ ,
t

t
t

′
=

′
r

T
r

 which means that ( )
( ) ( )

( )
6sinh 2 ,6cosh 2 ,6ˆ

6 2 cosh 2

t t
t

t
=T  

( ) ( )tanh 2 sech 21
, , .

2 2 2
t t

=  At ln2t =  this is 15 2 34,1 2 ,4 2 17 .  

5b Since ( ) ( )
( )

ˆ ,
t

t
t

′
=

′
T

N
T

 we have ( )
( ) ( ) ( )

( )
( ) ( )

22 sech 2 ,0, 2 sech 2 tanh 2ˆ sech 2 ,0, tanh 2
2 sech 2

t t t
t t t

t

−
= = −N  which 

at ln2t =  is 8 17 ,0, 15 17 .−  

5c Since ( ) ( ) ( )ˆˆ ˆ ,t t t= ×B T N  we can easily determine that ( )ˆ ln2 15 2 34,1 2 ,4 2 17 8 17,0, 15 17= × −B  

15 2 34,1 2 , 4 2 17 .= − −  

5d Another curvature formula is ( )
( )
( )

.
t

t
t

κ
′

=
′

T

r
 We have already found each of these, so this is the most convenient 

formula to use; it gives ( ) ( )
( ) ( )2

2 sech 2 1
6cosh 26 2 cosh 2

t
t

tt
κ = =  which at ln2t =  is 32 867.  

5e Plugging in everything to the given formula gives 
( )2

45 4 51 4 6

51 2 45 2 0

45 51 0 1728 32
.

46818 867153 2
τ = = =  

 

6a Begin with .= ×B T N  Then ( )d d d d
ds ds ds ds

= × = × + ×
B N T

T N T N  by the product rule. According to the Frenet-

Serret formulas (page 906 of Stewart’s textbook), ,
d
ds

κ=T
N  so we can substitute in the second term: 

.
d d
ds ds

κ= × + ×
B N

T N N  Since the cross product of any vector with itself is always the zero vector, the second 

term is the zero vector and ,
d d
ds ds

= ×
B N

T  which is what we wanted. 

6b It can be shown (exercise 49, section 14.3) that .
d
ds

⊥ ⊥
B

T B  Any vector perpendicular to both must be parallel to 

N because .= ×B T N  

6c Since B̂  is a constant unit vector perpendicular to the plane containing the curve, ,
d
ds

=
B

0  but since 
d
ds

τ= −
B

N  by 

the Frenet-Serret formulas, we know .τ− =N 0  This means that either 0τ =  or ,=N 0  the latter of which we 
know not to be the case. Therefore 0.τ =  

 



7 From the x- and y-components of the curve, the projection of the 
curve onto the yz-plane is an origin-centered circle with radius 
1. This suggests that the right circular cylinder is given by 

2 2 1.x y+ =  Note also that 2 .z x=  This is the other cylinder. 
The cylinders and the curve are shown at right.  


