Multivariable Calculus Review Problems — Chapter 14

Things to Know and Be Able to Do

- Analyze curves in \mathbb{R}^3 given by vector-valued functions, finding their shape, value, tangent vector function, normal vector function, binormal vector function, arc length, curvature, torsion, osculating circle, derivatives, integral
- > Parameterize space curves in terms of arc length (and otherwise) and know why this is useful
- > Understand the meaning of velocity, acceleration, and their components with respect to space curves
- > Determine the intersections of surfaces in terms of space curves

Practice Problems

You may use a calculator to evaluate derivatives and integrals and simplify expressions. The original test, of course, required that you show relevant work.

1 Find parametric equations for the *line* tangent to the curve $\mathbf{r}(t) = e^{t}\hat{\mathbf{i}} + (\sin t)\hat{\mathbf{j}} + \ln(1-t)\hat{\mathbf{k}}$ at t = 0.

2 Find the *point* on the curve $\mathbf{r}(t) = (5\sin t)\hat{\mathbf{i}} + (5\cos t)\hat{\mathbf{j}} + 12t\hat{\mathbf{k}}$ at a distance of $13\pi/4$ along the curve from the origin in the direction of increasing arc length.

3 Consider the curve $\mathbf{r}(t) = t\hat{\mathbf{i}} + (t^3 + 3t^2 - 24t)\hat{\mathbf{j}}$.

3a Find the velocity and acceleration functions $\mathbf{v}(t)$ and $\mathbf{a}(t)$ for this vector-valued function.

3b Find the speed of the particle at t = 2.

3c Give the unit tangent vector and unit normal vector at t = 2.

3d Find the curvature κ at t = 2.

3e Find a_T , the scalar component of acceleration in the direction of the tangent, at t = 2.

4 Find the equation for the osculating circle of the ellipse $x^2/9 + y^2/25 = 1$ at the point (0,-5) and draw the osculating circle on the graph given. (Hint: write the ellipse in parametric form first. The osculating circle has the same curvature, tangent vector, and normal vector at the point.)

5 Consider the curve $\mathbf{r}(t) = \langle 3\cosh(2t), 3\sinh(2t), 6t \rangle$. Find each of the following at the point where $t = \ln 2$:

5a the unit tangent vector $\hat{\mathbf{T}}$ 5b the unit normal vector $\hat{\mathbf{N}}$ 5e the torsion τ , using the formula $\tau = \frac{\begin{vmatrix} x' & y' & z' \\ x'' & y'' & z'' \\ x''' & y''' & z'' \\ x''' & y''' & z''' \\ \frac{x''' & y''' & z'''}{\|\mathbf{v} \times \mathbf{a}\|^2}$

6 Although we use a different formula most of the time, torsion τ is defined by $\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}$, where *s* is the parameter for arc length.

6a Show that $\frac{d\mathbf{B}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds}$. (Hint: start with a definition for **B** and differentiate.) **6b** Explain why $\frac{d\mathbf{B}}{ds} || \mathbf{N}$.

6c Explain why the torsion of a plane curve must be zero.

7 The curve with parametric equations $\langle x, y, z \rangle = \langle \sin t, \cos t, \sin^2 t \rangle$ is the curve of intersection of a circular cylinder and a parabolic cylinder. Find Cartesian equations for the cylinders and use these equations to draw the curve.

Answers

$$\begin{array}{ll}
 1 & \langle x, y, z \rangle = (1,0,0) + \langle 1,1,-1 \rangle t & 4 \ x^2 + (y+16/5)^2 = (9/5)^2 \\
 2 & (5/\sqrt{2},5/\sqrt{2},3\pi) & 5a \ \hat{\mathbf{T}} = \langle 15\sqrt{2}/34,1/\sqrt{2},4\sqrt{2}/17 \rangle \\
 3a \ \mathbf{v}(t) = \langle 1,3t^2 + 6t - 24 \rangle; \ \mathbf{a}(t) = \langle 0,6t + 6 \rangle & 5b \ \hat{\mathbf{N}} = \langle 8/17,0,-15/17 \rangle \\
 3b \ \|\mathbf{v}(2)\| = 1 & 3c \ \hat{\mathbf{T}} = \langle 1,0 \rangle; \ \hat{\mathbf{N}} = \langle 0,1 \rangle & 5c \ \hat{\mathbf{B}} = \langle -15\sqrt{2}/34,1/\sqrt{2},-4\sqrt{2}/17 \rangle \\
 3d \ \kappa(2) = 18 & 3e \ a_T = 0 & 5d \ \kappa = 32/867 & 5e \ \tau = 32/867 \\
 & 7 \ x^2 + y^2 = 1 \ \text{and} \ z = x^2
\end{array}$$

Solutions

- 1 We evaluate $\mathbf{r}(0) = \langle e^0, \sin 0, \ln 1 \rangle = \langle 1, 0, 0 \rangle$, which we will use as a point on our line. Finding the tangent line requires differentiating $\mathbf{r}(t)$ to get $\mathbf{r}'(t) = \langle e^t, \cos t, -\frac{1}{1-t} \rangle$, which at t = 0 is $\mathbf{r}'(0) = \langle e^0, \cos 0, -\frac{1}{1-0} \rangle = \langle 1, 1, -1 \rangle$, which is a direction vector for the tangent line. Thus the line is $\langle x, y, z \rangle = (1, 0, 0) + \langle 1, 1, -1 \rangle t$.
- 2 Recall that arc length s is given by $s(t) = \int_{a}^{t} ||\mathbf{r}'(u)|| du$. Therefore we first evaluate $||\mathbf{r}'(u)||$ (we are using u because t is needed as the upper limit of the integral. This requires finding $\mathbf{r}'(u) = \langle 5\cos t, -5\sin t, 12 \rangle$, of which the magnitude is $\sqrt{(5\cos t)^{2} + (-5\sin t)^{2} + 12^{2}} = \sqrt{25\cos^{2} t + 25\sin^{2} t + 144} = \sqrt{25(1) + 144} = \sqrt{169} = 13$. Since we want to solve for the point at which the arc length is a known value, we set $\int_{0}^{t} 13du = 13\pi/4$, or $13u]_{0}^{t} = 13\pi/4$, so $13t = 13\pi/4$ and $t = \pi/4$. We still have to find the point, so we evaluate $\mathbf{r}(\pi/4) = \langle 5/\sqrt{2}, 5/\sqrt{2}, 3\pi \rangle$.
- **3a** Since $\mathbf{v}(t) = \mathbf{r}'(t)$, we differentiate each component: $\mathbf{v}(t) = \langle 1, 3t^2 + 6t 24 \rangle$. Similarly, $\mathbf{a}(t) = \mathbf{v}(t) = \mathbf{r}''(t)$, so we differentiate each component again to get $\mathbf{a}(t) = \langle 0, 6t + 6 \rangle$.

3b Speed is given by $\|\mathbf{v}(t)\|$, so we evaluate $\mathbf{v}(2) = \langle 1, 3(2)^2 + 6(2) - 24 \rangle = \langle 1, 0 \rangle$; the magnitude of that is 1.

3c The unit tangent vector $\hat{\mathbf{T}}$ is given by $\hat{\mathbf{T}}(t) = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}$, so we must find $\|\mathbf{v}(t)\|$. This is $\sqrt{1^2 + (3t^2 + 6t - 24)^2} = \sqrt{9t^4 + 36t^3 - 108t^2 - 288t + 577}$ which at t = 2 is 1. So $\hat{\mathbf{T}}(2) = \frac{\langle 1, 0 \rangle}{1} = \langle 1, 0 \rangle$. 3d The curvature κ is given by $\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} = \frac{\|\langle 0, 0, 6t + 6 \rangle\|}{(9t^4 + 36t^3 - 108t^2 - 288t + 577)^{3/2}}$ which at t = 2 is 18. 3e By definition, $a_T = \frac{d}{dt} \|\mathbf{v}\|$, which is $\frac{d}{dt} (\sqrt{9t^4 + 36t^3 - 108t^2 - 288t + 577})$. This is easier than it looks to do by hand, but can be evaluated by your calculator also as $\frac{18t^3 + 54t^2 - 108t - 144}{\sqrt{1-4t^2 - 28t^2}}$, which at t = 2 is 0.

$$\frac{1}{\sqrt{9t^4 + 36t^3 - 108t^2 - 288t + 577}}, \text{ which at$$

4 The ellipse can be parameterized as $\mathbf{r}(t) = \langle 3\cos t, 5\sin t \rangle$, in which case the point (0, -5) is at $t = 3\pi/2$. $\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} = \frac{\|\langle -3\sin t, 5\cos t \rangle \times \langle 3\cos t, -5\sin t \rangle\|}{\|\langle -3\sin t, 5\cos t \rangle\|^3}$. It is simplest to evaluate this by calculator; at $t = 3\pi/2$, $\kappa = 5/9$. Since the radius of the osculating circle is the reciprocal of the curvature, r = 9/5. The circle is known to touch (0,-5) at its bottom, so knowing its radius also allows us to determine that the y-coordinate of the osculating circle's center is -16/5. Since the curve is symmetric about the y-axis, so must be the osculating circle, and thus its center has x-coordinate 0. To recapitulate, the circle has radius 9/5 and is centered at (0,-16/5), meaning that its equation is $x^2 + (y+16/5)^2 = (9/5)^2$. The picture is shown at right.

5a Again,
$$\hat{\mathbf{T}}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$
, which means that $\hat{\mathbf{T}}(t) = \frac{\langle 6\sinh(2t), 6\cosh(2t), 6\rangle}{6\sqrt{2}\cosh(2t)}$

$$= \left\langle \frac{\tanh(2t)}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\operatorname{sech}(2t)}{\sqrt{2}} \right\rangle$$
. At $t = \ln 2$ this is $\left\langle 15\sqrt{2}/34, 1/\sqrt{2}, 4\sqrt{2}/17 \right\rangle$.

х

5b Since $\hat{\mathbf{N}}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$, we have $\hat{\mathbf{N}}(t) = \frac{\langle \sqrt{2} \operatorname{sech}^2(2t), 0, -\sqrt{2} \operatorname{sech}(2t) \tanh(2t) \rangle}{\sqrt{2} \operatorname{sech}(2t)} = \langle \operatorname{sech}(2t), 0, -\tanh(2t) \rangle$ which at $t = \ln 2$ is $\langle 8/17, 0, -15/17 \rangle$.

5c Since $\hat{\mathbf{B}}(t) = \hat{\mathbf{T}}(t) \times \hat{\mathbf{N}}(t)$, we can easily determine that $\hat{\mathbf{B}}(\ln 2) = \langle 15\sqrt{2}/34, 1/\sqrt{2}, 4\sqrt{2}/17 \rangle \times \langle 8/17, 0, -15/17 \rangle$ = $\langle -15\sqrt{2}/34, 1/\sqrt{2}, -4\sqrt{2}/17 \rangle$.

5d Another curvature formula is $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$. We have already found each of these, so this is the most convenient

formula to use; it gives $\kappa(t) = \frac{\sqrt{2} \operatorname{sech}(2t)}{6\sqrt{2} \cosh(2t)} = \frac{1}{6\cosh^2(2t)}$ which at $t = \ln 2$ is 32/867. **5e** Plugging in everything to the given formula gives $\tau = \frac{\begin{vmatrix} 45/4 & 51/4 & 6 \\ 51/2 & 45/2 & 0 \\ 45 & 51 & 0 \\ (153\sqrt{2})^2 \end{vmatrix} = \frac{1728}{46818} = \frac{32}{867}.$

6a Begin with $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Then $\frac{d\mathbf{B}}{ds} = \frac{d}{ds}(\mathbf{T} \times \mathbf{N}) = \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \frac{d\mathbf{T}}{ds} \times \mathbf{N}$ by the product rule. According to the Frenet-Serret formulas (page 906 of Stewart's textbook), $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$, so we can substitute in the second term: $\frac{d\mathbf{B}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \kappa \mathbf{N} \times \mathbf{N}$. Since the cross product of any vector with itself is always the zero vector, the second term is the zero vector and $\frac{d\mathbf{B}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds}$, which is what we wanted. 6b It can be shown (exercise 49, section 14.3) that $\mathbf{T} \perp \frac{d\mathbf{B}}{ds} \perp \mathbf{B}$. Any vector perpendicular to both must be parallel to

N because
$$\mathbf{B} = \mathbf{T} \times \mathbf{N}$$
.

6c Since $\hat{\mathbf{B}}$ is a constant unit vector perpendicular to the plane containing the curve, $\frac{d\mathbf{B}}{ds} = \mathbf{0}$, but since $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$ by the Frenet-Serret formulas, we know $-\tau \mathbf{N} = \mathbf{0}$. This means that either $\tau = 0$ or $\mathbf{N} = \mathbf{0}$, the latter of which we know not to be the case. Therefore $\tau = 0$.

7 From the *x*- and *y*-components of the curve, the projection of the curve onto the *yz*-plane is an origin-centered circle with radius 1. This suggests that the right circular cylinder is given by $x^2 + y^2 = 1$. Note also that $z = x^2$. This is the other cylinder. The cylinders and the curve are shown at right.

