Multivariable Calculus Review Problems — Chapter 14

Things to Know and Be Able to Do

- \triangleright Analyze curves in \mathbb{R}^3 given by vector-valued functions, finding their shape, value, tangent vector function, normal vector function, binormal vector function, arc length, curvature, torsion, osculating circle, derivatives, integral
- ¾ Parameterize space curves in terms of arc length (and otherwise) and know why this is useful
- \triangleright Understand the meaning of velocity, acceleration, and their components with respect to space curves
- \triangleright Determine the intersections of surfaces in terms of space curves

Practice Problems

You may use a calculator to evaluate derivatives and integrals and simplify expressions. The original test, of course, required that you show relevant work.

1 Find parametric equations for the *line* tangent to the curve $\mathbf{r}(t) = e^{t}\hat{\mathbf{i}} + (\sin t)\hat{\mathbf{j}} + \ln(1-t)\hat{\mathbf{k}}$ at $t = 0$.

2 Find the *point* on the curve $\mathbf{r}(t) = (5\sin t)\hat{\mathbf{i}} + (5\cos t)\hat{\mathbf{j}} + 12t\hat{\mathbf{k}}$ at a distance of $13\pi/4$ along the curve from the origin in the direction of increasing arc length.

3 Consider the curve $\mathbf{r}(t) = t\hat{\mathbf{i}} + (t^3 + 3t^2 - 24t)\hat{\mathbf{j}}$.

3a Find the velocity and acceleration functions $\mathbf{v}(t)$ and $\mathbf{a}(t)$ for this vector-valued function.

 3b Find the speed of the particle at *t* = 2.

3c Give the unit tangent vector and unit normal vector at *t* = 2.

3d Find the curvature κ at $t = 2$.

3e Find a_T , the scalar component of acceleration in the direction of the tangent, at $t = 2$.

4 Find the equation for the osculating circle of the ellipse $x^2/9 + y^2/25 = 1$ at the point $(0, -5)$ and draw the osculating circle on the graph given. (Hint: write the ellipse in parametric form first. The osculating circle has the same curvature, tangent vector, and normal vector at the point.)

5 Consider the curve $\mathbf{r}(t) = \langle 3\cosh(2t), 3\sinh(2t), 6t \rangle$. Find each of the following at the point where $t = \ln 2$:

 $\mathbf{\hat{5a}}$ the unit tangent vector $\hat{\mathbf{T}}$ **5b** the unit normal vector **N**ˆ

 $\mathbf{\hat{5c}}$ the unit binormal vector $\hat{\mathbf{B}}$ **5d** the curvature ^κ

x y z

 $'$ v' z'

5e the torsion τ , using the formula $\tau = \frac{|\mathbf{r}|^2}{||\mathbf{r}||^2}$ *x y z* $\tau = \frac{|x^m y^m z|}{|x - y^m z|}$ $\int y''$ z'' $=\frac{\begin{vmatrix} x^{\prime\prime\prime} & y^{\prime\prime\prime} & z^{\prime\prime\prime} \end{vmatrix}}{\begin{vmatrix} \mathbf{v}\times\mathbf{a}\end{vmatrix}\begin{vmatrix} 2\end{vmatrix}}$

6 Although we use a different formula most of the time, torsion τ is defined by $\tau = -\frac{d\mathbf{B}}{d}\cdot\mathbf{N}$, *ds* $\tau = -\frac{dB}{dt} \cdot N$, where *s* is the parameter for arc length.

6a Show that $\frac{dB}{dt} = T \times \frac{dN}{dt}$. *ds ds* $\frac{\mathbf{B}}{\mathbf{B}} = \mathbf{T} \times \frac{d\mathbf{N}}{\mathbf{I}}$. (Hint: start with a definition for **B** and differentiate.) **6b** Explain why $\frac{d\mathbf{B}}{d\mathbf{I}}$ || **N**. *ds* $\frac{\mathbf{B}}{\mathbf{A}}$ $\|\mathbf{N}\|$

6c Explain why the torsion of a plane curve must be zero.

7 The curve with parametric equations $\langle x, y, z \rangle = \langle \sin t, \cos t, \sin^2 t \rangle$ is the curve of intersection of a circular cylinder and a parabolic cylinder. Find Cartesian equations for the cylinders and use these equations to draw the curve.

Answers

1
$$
\langle x, y, z \rangle = (1,0,0) + \langle 1, 1, -1 \rangle t
$$

\n2 $(5/\sqrt{2}, 5/\sqrt{2}, 3\pi)$
\n3a $\mathbf{v}(t) = \langle 1, 3t^2 + 6t - 24 \rangle$; $\mathbf{a}(t) = \langle 0, 6t + 6 \rangle$
\n3b $\|\mathbf{v}(2)\| = 1$
\n3c $\hat{\mathbf{T}} = \langle 1, 0 \rangle$; $\hat{\mathbf{N}} = \langle 0, 1 \rangle$
\n3d $\kappa(2) = 18$
\n3e $a_T = 0$
\n4 $x^2 + (y + 16/5)^2 = (9/5)^2$
\n5a $\hat{\mathbf{T}} = \langle 15\sqrt{2}/34, 1/\sqrt{2}, 4\sqrt{2}/17 \rangle$
\n5b $\hat{\mathbf{N}} = \langle 8/17, 0, -15/17 \rangle$
\n5c $\hat{\mathbf{B}} = \langle -15\sqrt{2}/34, 1/\sqrt{2}, -4\sqrt{2}/17 \rangle$
\n6d $\kappa = 32/867$
\n7 $x^2 + y^2 = 1$ and $z = x^2$

Solutions

- 1 We evaluate ${\bf r}(0)$ = $\left\langle e^0,\sin 0,\ln 1\right\rangle$ = $\langle 1,0,0\rangle$, which we will use as a point on our line. Finding the tangent line requires differentiating **r**(*t*) to get **r**'(*t*) = $\langle e^t, \text{cost}, -\frac{1}{2} \rangle$, 1 $f(t) = \left\langle e^t, \cos t, -\frac{1}{1-t} \right\rangle$, which at $t = 0$ is $f'(0) = \left\langle e^0, \cos 0, -\frac{1}{1-0} \right\rangle = \left\langle 1, 1, -1 \right\rangle$, which is a direction vector for the tangent line. Thus the line is $\langle x, y, z \rangle = (1,0,0) + \langle 1,1, -1 \rangle t$.
- **2** Recall that arc length *s* is given by $s(t) = \int_a^t ||\mathbf{r}'(u)|| du$. Therefore we first evaluate $||\mathbf{r}'(u)||$ (we are using *u* because *t* is needed as the upper limit of the integral. This requires finding $\mathbf{r}'(u) = \langle 5\cos t, -5\sin t, 12 \rangle$, of which the magnitude is $\sqrt{(5\cos t)^2 + (-5\sin t)^2 + 12^2} = \sqrt{25\cos^2 t + 25\sin^2 t + 144} = \sqrt{25(1) + 144} = \sqrt{169} = 13$. Since we want to solve for the point at which the arc length is a known value, we set $\int_0^t 13 du = 13\pi/4$, or $13u\Big]_0^t = 13\pi/4$, so $13t = 13\pi/4$ and $t = \pi/4$. We still have to find the point, so we evaluate $\mathbf{r}(\pi/4) = \left\langle 5/\sqrt{2}, 5/\sqrt{2}, 3\pi \right\rangle$.
- **3a** Since $\mathbf{v}(t) = \mathbf{r}'(t)$, we differentiate each component: $\mathbf{v}(t) = \langle 1, 3t^2 + 6t 24 \rangle$. Similarly, $\mathbf{a}(t) = \mathbf{v}(t) = \mathbf{r}''(t)$, so we differentiate each component again to get $\mathbf{a}(t) = \langle 0, 6t + 6 \rangle$.

3b Speed is given by $\|\mathbf{v}(t)\|$, so we evaluate $\mathbf{v}(2) = \langle 1,3(2)^2 + 6(2) - 24 \rangle = \langle 1,0 \rangle$; the magnitude of that is 1.

- **3c** The unit tangent vector $\hat{\mathbf{T}}$ is given by $\hat{\mathbf{T}}(t) = \frac{\mathbf{v}(t)}{||t t|^2}$ (t) $\hat{\mathbf{T}}(t) = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|},$ so we must find $\|\mathbf{v}(t)\|$. This is $\sqrt{1^2 + (3t^2 + 6t - 24)^2} = \sqrt{9t^4 + 36t^3 - 108t^2 - 288t + 577}$ which at $t = 2$ is 1. So $\hat{T}(2) = \frac{\langle 1,0 \rangle}{\langle 1,0 \rangle} = \langle 1,0 \rangle$. 1 $\hat{T}(2) = \frac{\sum y_i y_j}{4} =$ **3d** The curvature κ is given by $\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$ (t) ||³ $\left[9t^4 + 36t^3 - 108t^2 - 288t + 577 \right]^{3/2}$ $0,0,6t + 6$ $9t^4 + 36t^3 - 108t^2 - 288t + 577$ $\|\mathbf{x} \cdot \mathbf{r}''(t)\|$ $\|\langle 0, 0, 6t \rangle\|$ *t* $\kappa(t) = \frac{\left\| \mathbf{r}'(t) \times \mathbf{r}''(t) \right\|}{\left\| \mathbf{r}'(t) \right\|^3} = \frac{\left\| \left\langle 0, 0, 6t + 6 \right\rangle \right\|}{\left(9t^4 + 36t^3 - 108t^2 - 288t + 1 \right)}$ **r** which at $t = 2$ is 18. **3e** By definition, $a_T = \frac{d}{dt} ||\mathbf{v}||$, which is $\frac{d}{dt} (\sqrt{9t^4 + 36t^3 - 108t^2 - 288t + 577})$. *dt* +36t³ – 108t² – 288t + 577). This is easier than it looks to do by hand, but can be evaluated by your calculator also as 3.1511^2 $\frac{18t^3 + 54t^2 - 108t - 144}{9t^4 + 36t^3 - 108t^2 - 288t + 577},$ $t^4 + 36t^3 - 108t^2 - 288t$ $+54t^2-108t$ – $+36t^3-108t^2-288t+$ which at $t = 2$ is 0.
- **4** The ellipse can be parameterized as $\mathbf{r}(t) = \langle 3\cos t, 5\sin t \rangle$, in which case the point $(0, -5)$ is at $t = 3\pi/2$. $(t) = \frac{\left| \mathbf{r}'(t) \times \mathbf{r}''(t) \right|}{\left| \mathbf{r} \right| \left| \mathbf{r} \right| \left| \mathbf{r} \right|}$ $\frac{f(x)}{f(x)} = \frac{\left\|(-3\sin t, 5\cos t\right) \times \left(3\cos t, -5\sin t\right)\right\|}{\left\|(-3\sin t, 5\cos t\right\|^3}.$ *t* $\kappa(t) = \frac{\left\| \mathbf{r}'(t) \times \mathbf{r}''(t) \right\|}{\left\| \mathbf{r}'(t) \right\|^3} = \frac{\left\| \left\langle -3\sin t, 5\cos t \right\rangle \times \left\langle 3\cos t, -\right\rangle}{\left\| \left\langle -3\sin t, 5\cos t \right\rangle \right\|^3}$ **r** It is simplest to evaluate this by calculator; at $t = 3\pi/2$, κ = 5/9. Since the radius of the osculating circle is the reciprocal of the curvature, $r = 9/5$. The circle is known to

touch $(0, -5)$ at its bottom, so knowing its radius also allows us to determine that the *y*-coordinate of the osculating circle's center is -16/5. Since the curve is symmetric about the *y*-axis, so must be the osculating circle, and thus its center has *x*-coordinate 0. To recapitulate, the circle has radius 9/5 and is centered at $(0, -16/5)$, meaning that its equation is $x^2 + (y + 16/5)^2 = (9/5)^2$. The picture is shown at right.

5a Again,
$$
\hat{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}
$$
, which means that $\hat{T}(t) = \frac{\langle 6\sinh(2t), 6\cosh(2t), 6\rangle}{6\sqrt{2}\cosh(2t)}$
\n
$$
= \left\langle \frac{\tanh(2t)}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\operatorname{sech}(2t)}{\sqrt{2}} \right\rangle
$$
. At $t = \ln 2$ this is $\langle 15\sqrt{2}/34, 1/\sqrt{2}, 4\sqrt{2}/17 \rangle$.
\n5b Since $\hat{N}(t) = \frac{T'(t)}{\|T'(t)\|}$, we have $\hat{N}(t) = \frac{\langle \sqrt{2}\operatorname{sech}^2(2t), 0, -\sqrt{2}\operatorname{sech}(2t)\tanh(2t) \rangle}{\sqrt{2}\operatorname{sech}(2t)} = \left\langle \operatorname{sech}(2t), 0, -\tanh(2t) \right\rangle$ which

at $t = \ln 2$ is $\langle 8/17, 0, -15/17 \rangle$. $\hat{\mathbf{B}}(\text{In} \, 2) = \hat{\mathbf{T}}(t) \times \hat{\mathbf{N}}(t)$, we can easily determine that $\hat{\mathbf{B}}(\text{In} \, 2) = \left<15\sqrt{2}/34,1/\sqrt{2}$,4 $\sqrt{2}/17\right> \times \left<8/17,0,-15/17\right>$ $=\big\langle -15\sqrt{2}/34,1/\sqrt{2}, -4\sqrt{2}/17 \big\rangle.$

5d Another curvature formula is $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}.$ *t* $\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$ **r** We have already found each of these, so this is the most convenient

formula to use; it gives $\kappa(t) = \frac{\sqrt{2} \operatorname{sech}(2t)}{\sqrt{2} \pi (1/2)}$ $(2t)$ 6cosh² $(2t)$ $2 \operatorname{sech}(2t)$ 1 6 $\sqrt{2}\cosh(2t)$ 6 $\cosh^2(2t)$ $t = \frac{\sqrt{2}\,\text{sech}(2t)}{5\sqrt{2}}$ $t)$ $6 \cosh^2(2t)$ $k(t) = \frac{\sqrt{2 \text{ sech}(2t)}}{5(2 \text{ s})^2} = \frac{1}{5(2 \text{ s})^2}$ which at $t = \ln 2$ is 32/867. **5e** Plugging in everything to the given formula gives $\tau = \frac{1}{\left(153\sqrt{2}\right)^2}$ 45/4 51/4 6 $51/2$ 45/2 0 $\tau = \frac{\begin{vmatrix} 45 & 51 & 0 \end{vmatrix}}{\begin{pmatrix} 153\sqrt{2} \end{pmatrix}^2} = \frac{1728}{46818} = \frac{32}{867}.$

6a Begin with **B** = **T** × **N**. Then $\frac{dB}{dt} = \frac{d}{dt}(\mathbf{T} \times \mathbf{N}) = \mathbf{T} \times \frac{d\mathbf{N}}{dt} + \frac{d}{dt}$ *ds ds ds ds* $\frac{\mathbf{B}}{\mathbf{B}} = \frac{d}{dt}(\mathbf{T} \times \mathbf{N}) = \mathbf{T} \times \frac{d\mathbf{N}}{dt} + \frac{d\mathbf{T}}{dt} \times \mathbf{N}$ by the product rule. According to the Frenet-Serret formulas (page 906 of Stewart's textbook), $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$, so we can substitute in the second term: $\frac{d\mathbf{B}}{dt} = \mathbf{T} \times \frac{d\mathbf{N}}{dt} + \kappa \mathbf{N} \times \mathbf{N}.$ *ds ds* $\frac{B}{D} = T \times \frac{dN}{d\lambda} + \kappa N \times N$. Since the cross product of any vector with itself is always the zero vector, the second term is the zero vector and $\frac{d\mathbf{B}}{d\mathbf{I}} = \mathbf{T} \times \frac{d\mathbf{N}}{d\mathbf{I}}$, *ds ds* $\frac{\mathbf{B}}{\mathbf{B}} = \mathbf{T} \times \frac{d\mathbf{N}}{d\mathbf{B}}$, which is what we wanted. **6b** It can be shown (exercise 49, section 14.3) that $T \perp \frac{dB}{d\theta} \perp B$. *ds* $T \perp \frac{dB}{I} \perp B$. Any vector perpendicular to both must be parallel to

N because $B = T \times N$.

6c Since $\hat{\mathbf{B}}$ is a constant unit vector perpendicular to the plane containing the curve, $\frac{d\mathbf{B}}{ds} = \mathbf{0}$, but since $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$ by the Frenet-Serret formulas, we know $-\tau N = 0$. This means that either $\tau = 0$ or $N = 0$, the latter of which we know not to be the case. Therefore $\tau = 0$.

7 From the *x*- and *y*-components of the curve, the projection of the curve onto the *yz*-plane is an origin-centered circle with radius 1. This suggests that the right circular cylinder is given by $x^2 + y^2 = 1$. Note also that $z = x^2$. This is the other cylinder. The cylinders and the curve are shown at right.

