
Multivariable Calculus 
Review Problems — Chapter 15, part 2 
 
Things to Know and Be Able to Do 

 Everything from part one of this chapter 
 Evaluate gradients and understand the meaning of this operation 
 Use gradients to write tangent planes 
 Evaluate and optimize directional derivatives 
 Perform optimization for multivariate functions including the use of the method of Lagrange multipliers 

 

Practice Problems 
You may use a calculator. The original test, of course, required that you show relevant work. 
1 Write an equation for the tangent plane to the surface 2 23 2 15x xy y+ − =  at the point ( )2,3,4 .  
 
2 Find the derivative of ( ) 3 3, , 2f x y z x y xyz= + +  at ( )2, 1,0−  in the direction of 3, 2,1 .−  
 
3 Find parametric equations for the line tangent to the curve of intersection of the surfaces 2 23z x xy y= − +  and 

2 22 3 27 0x y z+ − + =  at ( )1, 2,11 .−  
 
4 Show that ( )0, 1 2−  is a saddle point of the function ( ) 2 2, 4 2 .f x y xy x y x= − −   

 
5 Consider the function ( ), .f x y xy=  Find the absolute maximum and absolute minimum values of this function on 

the half of the curve 2 29 4 1x y+ =  where 0.y ≥  
 
6 Consider the function ( ), ,f x y z xyz=  and the constraints 4x y z+ + =  and 3.x y z− − =  

 6a Set up the problem of finding the function’s extrema given the constraints with Lagrange multipliers. Show the 
complete system of equations that must be solved. Do not solve the system. 

 6b Represent the line of intersection of the two constraints parametrically and substitute this into the function to 
express the function in terms of one variable. Do not solve this equation. 

 6c Use the setup from either a or b to find the minimum value of the function given the constraints. 
 

7 Consider ( ) 2 3 2, ,f x y z axy byz cx z= + +  for real constants a, b, and c. The function’s maximum derivative at 

( )1,2, 1−  is 64 and is in the direction of the positive z-axis. Find a, b, and c. 
 
These questions were to be solved at home over a weekend with only a calculator and the Stewart textbook as resources: 
8 Use Lagrange multipliers to find the minimum volume for a region bounded by the coordinate planes and a plane 
tangent to the surface 2 2 2 2 2 2 1x a y b z c+ + =  in the first octant. 
 
9 Find all relative minima and maxima and saddle points of ( ) 4 3, 2 12 20.f x y x y x y= + − − +  Justify the type of 

point for each. 
 
10 Given ( ) 2 2, 2 2 ,f x y x y x y= + − −  find the absolute minimum and maximum values of the function on the square 

region bounded by the coordinate axes and the lines 2x =  and 2y = in the first quadrant. 



Answers 
1 18 2 30x y− =  2 26 14  

3 ( ), , 1, 2,11 17,20, 4x y z t= − + −  

5 maximum: 3; minimum: 3−  

6c 7 32  7 ( ) ( ), , 6,24, 8a b c = −  8 
3

2
abc  

9 ( )1 2, 2−  is a saddle point; ( )1 2,2  is a relative mini-
mum 

10 the absolute minimum is 2 at ( )1,1 ;  the absolute minimum is 0 at ( )0,0 ,  ( )0,2 ,  ( )2,0 ,  and ( )2,2  
 

Solutions 

1 Let ( ) 2 2, , 3 2 ;f x y z x xy y= + −  then 6 2 ,
f

x y
x
∂

= +
∂

 2 2 ,
f

x y
y
∂

= −
∂

 and obviously 0,
f
z
∂

=
∂

 so using equation (19) 

from page 984 of Stewart’s textbook gives the tangent plane as ( ) ( )
( ) ( ) ( ) ( )

2,3,4 2,3,4
0 6 2 2 2 2 3 ,x y x x y y= + − + − −  

or ( ) ( )0 18 2 2 3 .x y= − − −  This may also be written as 18 2 30.x y− =  

 

2 Taking the gradient f∇  gives 2 23 2 ,3 2 ,2 .x yz y xz xy+ +  Evaluated at ( )2, 1,0−  this is ( )2, 1,0 12,3, 4 .f∇ − = −  

Normalizing the given direction vector (call it a) results in 
3, 2,1 3 2 1ˆ , , .

14 14 14 14
−

= = = −
a

a
a

 The direc-

tional derivative for which we are looking results from dotting these vectors: 
3 2 1

12,3, 4 , ,
14 14 14

− ⋅ −  

36 6 4 26
.

14 14 14 14
= − − =  

 
3 The strategy here is to find the tangent plane to each surface at this point and then find the planes’ line of intersec-

tion. The first equation, letting ( ) 2 2
1 , 3f x y x xy y= − +  has 1 2 3

f
x y

x
∂

= −
∂

 and 1 2 3 .
f

y x
y

∂
= −

∂
 At ( )1, 2,11 ,−  

these evaluate to 8 and 7−  respectively, so the tangent plane to the first surface is ( ) ( )11 8 1 7 2 ;z x y− = − − +  
this can also be written as 8 7 11.x y z− − =  For the second equation, we will use the method we used in problem 

1: considering ( ) 2 2
2 , , 2 3 27.f x y z x y z= + − +  Now 2 4 ,

f
x

x
∂

=
∂

 2 2 ,
f

y
y

∂
=

∂
 and 2 3.

f
z

∂
= −

∂
 Evaluating these at 

( )1, 2,11 ,−  gives 4, 4,−  and 3−  respectively, so the tangent plane is ( ) ( ) ( )0 4 1 4 2 3 11 ,x y z= − − + − −  which 

might also be written as 4 4 3 21.x y z− − = −  Now we have two planes with normal vectors 1 8, 7, 1= − −n  and 

2 4, 4, 3= − −n  and we must find the planes’ line of intersection. Taking the cross product of the normal vectors 

gives 1 2

ˆˆ ˆ

8 7 1 17,20, 4

4 4 3

× = − − = −
− −

i j k

n n  which is the direction vector of the line of intersection. We already 

know that the point of mutual tangency of the planes is a point on this line, so we can write parametric equations 
for the line as ( ), , 1, 2,11 17,20, 4 .x y z t= − + −  

 

4 We first need to show that ( )0, 1 2−  is a critical point; we find 24 4 1
f

y xy
x
∂

= − −
∂

 which at ( )0, 1 2−  is 0; 

28 2
f

xy x
y
∂

= −
∂

 which at ( )0, 1 2−  is also 0. Since both are 0, this is a critical point. To determine what type of 



critical point this is, we use the Second Derivatives Test. The function’s three second derivatives are 
2

2 4 ,
f

y
x
∂

= −
∂

 

2

8 4 ,
f

y x
y x
∂

= −
∂ ∂

 and 
2

2 8 .
f

x
y

∂
=

∂
 The function ( )

22 2 2

2 2,
f f f

D x y
x y y x

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
= − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 is ( ) ( )( ), 4 8D x y y x= −  

( )2 2 28 4 16 32 64 .y x x xy y− − = − + −  Evaluating ( )0, 1 2D −  gives –16; according to the Second Derivatives 
Test, a negative result indicates a saddle point. 

  
5 We use the method of Lagrange multipliers; we will let the constraint (the given ellipse) be ( ) 2 2, 9 4 .g x y x y= +  

Thus f gλ∇ = ∇  means 
2 1
9 2

2 2

, ,

9 4 1

y x x y

x y

λ⎧ =⎪
⎨

+ =⎪⎩
. This system solves to (including positive y-values only) 

( ) 3 3
, , 2 , , 2 .

2 2
x y ⎧ ⎫⎛ ⎞ ⎛ ⎞∈ −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
 These evaluate to 3−  and 3, respectively, but we must also check the end-

points of the half of the curve. These are ( ) ( ), 3,0x y = ±  which, when inputted to ( ), ,f x y xy=  give 0. Therefore 
the absolute maximum value is 3 and the absolute minimum value is 3.−  

 
6a The setup for Lagrange multipliers with two constraints is μ ;f g hλ∇ = ∇ + ∇  in this case, we have ( ), , ,f x y z xyz=  

( ), , ,g x y z x y z= + +  and ( ), , .h x y z x y z= − −  The gradients are , , ,f yz xz xy∇ =  1,1,1 ,g∇ =  and 

1, 1, 1 .h∇ = − −  Therefore the system is as follows: 

, , 1,1,1 μ 1, 1, 1

4

3

yz xz xy
x y z
x y z

λ⎧ = + − −
⎪ + + =⎨
⎪ − − =⎩

 which can be written 

less concisely, but probably more preferably to your instructor, as 

μ

μ

μ .

4

3

yz
xz
xy
x y z
x y z

λ
λ
λ

= +⎧
⎪ = −⎪⎪ = −⎨
⎪ + + =⎪

− − =⎪⎩

 

6b The two constraints represent planes with normal vectors 1,1,1  and 1, 1, 1 ;− −  to find their line of intersection, 

we take the cross product of the normal vectors: 

ˆˆ ˆ

1,1,1 1, 1, 1 1 1 1 0,2, 2 .

1 1 1

× − − = = −
− −

i j k

 This is a direction 

vector for the line of intersection. To find a point on the line let z be zero and then solve the system 
0 4

0 3

x y
x y
+ + =⎧

⎨ − − =⎩
 

to get ( ) ( ), 7 2 ,1 2x y =  which, taken with 0,z =  is a point on the line. Therefore the line may be represented pa-

rametrically as ( ), , 7 2 ,1 2 ,0 0,2, 2 ;x y z t= + −  that is, 

7 2

1 2 2 .

2

x
y t
z t

=⎧
⎪ = +⎨
⎪ = −⎩

 Substituting these values into the func-

tion gives ( ) ( ) ( )( ) 27 71
2 2 2, , 2 14 .f x y z xyz f t t t t t= → = + − = − −  

 
6c If it weren’t for the availability of CAS-enabled calculators, it would probably be easier to use the setup from part 

b, though since both have already been set up neither is very difficult; here we will demonstrate both methods. 



6ci Using the setup from part a, the system we found can be solved by calculator to give ( ) ( ), , 7 2 ,1 4 ,1 4x y z = . 

6cii Using the setup from part b, we need to find the extreme values of ( ) .f t  This is done by differentiating ( )f t  

with respect to t and setting this equal to zero; 7
228 0

df
t

dt
= − − =  implies 1 8.t = −  Now plugging that t value 

into the parametric equation for the line of intersection gives ( ) ( ), , 7 2 ,1 4 ,1 4 .x y z =  
We have found the same point at which the value is at a minimum through both methods. Evaluating the func-

tion at that point gives ( ) ( )( )( )7 2,1 4 ,1 4 7 2 1 4 1 4 7 32.f = =  

 

7 The function’s gradient is 2 2 2 33 ,2 , 2 .f ay cx z axy bz by cx z∇ = + + +  At the given point, we have ( )1,2, 1f∇ −  

4 3 ,4 ,2 2 .a c a b b c= + − −  The direction of its maximum derivative is parallel to the positive z-axis; to wit, 

0,0,1 ,  meaning that 4 3 ,4 ,2 2 0,0,1 .a c a b b c+ − − =  This gives ( ) ( ), , 3 32 ,3 8, 1 8 .a b c = −  We did not, 

however, use the piece of information that the value of the directional derivative here is 64, which is suspicious, so 
we check that the values of a, b, and c we have found do indeed result in that value: they do not. We multiply a, b, 
and c by 64 each so that ( ) ( ), , 6,24, 8a b c = −  and find that this results in the correct answer. 

 
8 We must firstly find the tangent plane to the given surface (an ellipsoid) at some arbitrary point ( )0 0 0, , .x y z  To do 

this, consider ( ) 2 2 2 2 2 2, ,f x y z x a y b z c= + +  and take 2 2 22 ,2 ,2f x a y b z c∇ =  which at ( )0 0 0, ,x y z  is 

( ) 2 2 2
0 0 0 0 0 0, , 2 ,2 ,2 .f x y z x a y b z c∇ =  According to equation (19) on page 984 of the Stewart textbook, we 

can use this to write the tangent plane as ( ) ( ) ( )00 0
0 0 02 2 2

22 2
0,

yx z
x x y y z z

a b c
− + − + − =  or equivalently in the form 

22 2
0 00 0 0 0

2 2 2 2 2 22 2 .
y yx z x z

x y z
a b c a b c

⎛ ⎞⎛ ⎞+ + = + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 Note that the second factor on the right side is 1 by the definition of 

the ellipsoid, since ( )0 0 0, ,x y z  is a point on it, and cancel a factor of 2 on each side. Now we know that 

00 0
2 2 2 1

yx z
x y z

a b c
+ + =  gives a tangent plane to the ellipsoid at ( )0 0 0, , .x y z  

The region in space described is a pyramid. To find its dimensions, we must work with the tangent plane we have 
found; it has x-, y-, and z-intercepts 2

0 ,a x  2
0 ,b y  and 2

0 ,c z  respectively. The pyramid, then, has height 2
0c z  

and a right triangular base with legs 2
0a x  and 2

0 .b y  Its volume is given by 
2 2 2

0 0 0

1 1 1
3 3 2

a b c
V Bh

x y z
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

2 2 2

0 0 0

.
6
a b c
x y z

=  This means we need to minimize 
2 2 2

0 0 06
a b c
x y z

 subject to the constraint 2 2 2 2 2 2
0 0 0 1.x a y b z c+ + =  Let 

( )
2 2 2

0 0 0
0 0 0

, ,
6
a b c

V x y z
x y z

=  and ( ) 2 2 2 2 2 2
0 0 0 0 0 0, , .C x y z x a y b z c= + +  We find the gradients for each of these 

functions: 
2 2 2 2 2 2 2 2 2

2 2 2
0 0 0 0 0 0 0 0 0

, ,
6 6 6

a b c a b c a b c
V

x y z x y z x y z
∇ = − − −  and 2 2 2

0 0 02 ,2 ,2 .C x a y b z c∇ =  The method of La-



grange multipliers requires that we solve the system 
1

V C
C

λ∇ = ∇⎧
⎨ =⎩

 for ( )0 0 0, , .x y z  This system is the less con-

cisely and more usefully written as 

2 2 2
0

2 2
0 0 0

2 2 2
0

2 2
0 0 0

2 2 2
0

2 2
0 0 0

2 2 2 2 2 2
0 0 0

2
6

2
6

2
6

1

xa b c
x y z a

ya b c
x y z b

za b c
x y z c

x a y b z c

λ

λ

λ

⎧
− =⎪
⎪
⎪
− =⎪
⎨
⎪
⎪− =
⎪
⎪ + + =⎩

 which we solve as follows: 

Solving the first equation for 0z  gives 
4 2 2

0 3
0 0

;
12

a b c
z

x yλ
= −  solving the second for 0z  gives 

2 4 2

0 3
0 0

.
12

a b c
z

x yλ
= −  We can set 

these equal to each other; 
4 2 2 2 4 2

3 3
0 0 0 012 12

a b c a b c
x y x yλ λ

− = −  means 2 2 2 2
0 0 .b x a y=  Since we are concerned only with non-

negative values of all the variables, we can take the square root of both sides and find 0 0 .
b

y x
a

=  Now solve the 

first and third equations for 0y  to get 
4 2 2

0 3
0 012

a b c
y

x zλ
= −  and 

2 2 4

0 3
0 012

a b c
y

x zλ
= −  respectively; again we set them equal 

to each other. This eventually produces 0 0 .
c

z x
a

=  We now substitute these known values of 0y  and 0z  into the 

last (the constraint) equation: 
( ) ( )2 22

0 00
2 2 2 1,

b c
a ax xx

a b c
+ + =  which is expanded to 

2 2
0
2

x b
a

+
2

0
2 2

x
a b

2c
+

2
0

2 2

x
a c

1,=  so 

2
0
2

1
;

3
x
a

=  that is, 0 .
3

a
x =  Substituting this into previously-found equations gives 0 3

b
y =  and 0 .

3
c

z =  

Now that we have the minimum values for 0 ,x  0 ,y  and 0 ,z  
we can find the minimum volume of the described region: 

2 2 2 2 2 2

0 0 0

3
.

6 26
3 3 3

a b c a b c
V abca b cx y z
= = =  

 
9 Given ( ) 4 3, 2 12 20,f x y x y x y= + − − +  we find the fol-

lowing significant partial derivatives: 38 1,f x x∂ ∂ = −  
23 12,f y y∂ ∂ = −  2 2 224 ,f x x∂ ∂ =  2 2 6 ,f y y∂ ∂ =  and 

2

0.
f

y x
∂

=
∂ ∂

 Consider ( )
22 2 2

2 2,
f f f

D x y
x y y x

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
= − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 

2144 .x y=  Now we must solve the system 
3

2

8 1 0

3 12 0

f x x

f y y

⎧∂ ∂ = − =⎪
⎨
∂ ∂ = − =⎪⎩

 which gives ( ) ( ), 1 2 , 2 .x y = ±  



Plugging each of these points into ( ),D x y  gives ( )1 2 ,2 72D =  and ( )1 2, 2 72.D − = −  Since the latter is nega-

tive, ( )1 2 , 2−  is a saddle point. For the former, we consider 
( )

2

2
1 2,2

6.
f

x
∂

=
∂

 Since this is positive, ( )1 2,2  is a 

relative minimum. In case you find yourself curious, a graph of this function is shown at right. 
 
 

10 Given ( ) 2 2, 2 2 ,f x y x y x y= + − −  we find 2 2f x x∂ ∂ = −  and 2 2 .f y y∂ ∂ = −  We must solve the system 

2 2 0

2 2 0

f x x
f y y
∂ ∂ = − =⎧
⎨∂ ∂ = − =⎩

  which gives ( ) ( ), 1,1 .x y =  Since this is in the region given, we must consider it: ( )1,1 2.f =  

Now we must consider the boundaries: 

For 0,x =  we have ( ) 20, 2 ;f y y y= −  then 
( )0,

2 2 ;
y

f
y

y
∂

= −
∂

 setting that equal to zero gives 1,y =  so we must con-

sider ( )0,1 1.f =  

For 2,x =  we have ( ) 22, 2 ;f y y y= −  then 
( )2,

2 2 ;
y

f
y

y
∂

= −
∂

 setting that equal to zero gives 1,y =  so we must con-

sider ( )2,1 1.f =  

For 0,y =  we have ( ) 2,0 2 ;f x x x= −  then 
( ),0

2 2 ;
x

f
x

x
∂

= −
∂

 setting that equal to zero gives 1,x =  so we must con-

sider ( )1,0 1.f =  

For 2,y =  we have ( ) 2,2 2 .f x x x= −  Then 
( ),2

2 2 ;
x

f
x

x
∂

= −
∂

 setting that equal to zero gives 1,x =  so we must con-

sider ( )1,2 1.f =  

Now we consider the four vertices of the square as follows: ( )0,0 0;f =  ( )0,2 0;f =  ( )2,0 0;f =  and ( )2,2 0.f =  

This gives us a total of nine points to consider. Of these, the function’s value is maximal at ( )1,1  where it is 2; the 
functional is minimal at the four vertices, where it is 0. 


