
Multivariable Calculus 
Review Problems — Chapter 16 
 
Things to Know and Be Able to Do 

 Understand the Riemann sum definition of double and triple integrals and compare them and their applica-
tions with those of single integrals 

 Understand and apply the formulas for average value and surface area with multiple integrals, including the 
derivation of these and their analogies to similar formulas for single integrals 

 Use Fubini’s Theorem for evaluating iterated integrals 
 Change the order of integration when possible, and understand when it is not possible or not feasible to do so 
 Evaluate double integrals in both Cartesian and polar coordinates, and triple integrals in Cartesian, cylindrical, 

and spherical coordinates, and use the Jacobian transformations for these conversions 
 Use multiple integrals to find centers of mass and moments of inertia 
 Apply the method of the Jacobian to evaluate integrals over complicated regions, including knowing when to 

use a transformation, finding a suitable transformation, and applying this transformation 
 

Practice Problems 
These problems should be done without a calculator. The original test, of course, required that you show relevant work. 
1 Write an integral expression in Cartesian coordinates that represents the volume of the region cut from the cylinder 

2 2 4y z+ =  by the planes 0x =  and 3.x z+ =  You need not evaluate the expression. 
 

2 Evaluate the double integral ( )1 2 2
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( )

2

2

1 1

22 20 1

2
.

1

x

x
dydx

x y

−

− − + +
∫ ∫  

 

4 Rewrite the integral 
( )2
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− − −∫ ∫  in polar coordinates. You need not evaluate it. 

 
5 Set up, but do not evaluate, an integral expression that represents the x-coordinate of the center of mass of the re-
gion in the xy-plane bounded by the parabola 2x y y= −  and the line 0x y+ =  if the density δ  of the region is given 

by ( ), .x y x yδ = +  

 
6 A solid region in space is bounded above by the sphere 2 2 2 20x y z+ + =  and below by the paraboloid 2 2 .z x y= +  

The density δ  of the region is given by the function ( ), , .
yz

x y z
x

δ =  Write an integral expression using cylindrical co-

ordinates that represents the mass of the region. You need not evaluate it. 
 

7 Rewrite the integral expression 
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−∫ ∫ ∫  using the order .dxdzdy∫∫∫  You need not evaluate it. 

 

8 Give a physical interpretation of the quantity 
2π π 6 8cos 3

0 0 0
cos sin .d d d

ϕ
ρ ϕ ϕ ρ ϕ θ∫ ∫ ∫  Include in your answer a descrip-

tion of the region of integration and the meaning of the integral. Be as specific as possible. 
 



9 Use the transformation 2 ,u y x=  2v x y=  and the following steps to show that the area of the region in the first 

quadrant bounded by the curves 2 ,y x=  22 ,y x=  2 ,x y=  and 24x y=  is 1 8.  Hint: 3
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 9a Sketch the region bounded by the four given curves in the xy-plane. 

 9b Show that the Jacobian is 2 2

1
.

3u v
 

 9c Express the area using an integral in the uv-plane, and show the evaluation to give 1 8.  
 
Bonus Problem Set up a triple integral expression using only one triple integral that represents the volume of the re-
gion that lies between the surfaces 2 2z x y= +  and 2 24 4z x y= +  between the surfaces 1z =  and 4.z =  You need not 
evaluate it. 



Answers 
Your answers may vary, especially given that often several different orders of integration are possible. One way to check 
equivalence is have your calculator evaluate (or evaluate by hand) your answer and the given answer and determine whether 
the answers are equivalent; if they are, this is not conclusive, but it is a good sign. 
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8 the moment about the xy-plane of a sphere with radius 4
centered about the x-axis and tangent to the yz-plane 

Bonus Problem 
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Solutions 
1 The region is shown at right. We see that x goes from 0 to 3 ,z−  z is governed 

by the cylinder so it goes from 24 y− −  to 24 ,y−  and x simply goes from 

–2 to 2. Since the integrand is 1, the integral is 
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2 The region is shown at left. We must 
switch the order of integration in order to 
perform the operation; the limts are rewritten so that the integral becomes 
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x dydx∫ ∫  Only now is it possible to evaluate this as 
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2 cos ;x x dx= ∫  perhaps you can antidifferentiate that by inspec-

tion. If not, use u-substitution with 2u x=  and 2du xdx=  to write the integrand as cosudu  of which an antideri-

vative is ( )2sin sinu x= , so we have found ( ) 22

0
sin sin 4.x ⎤ =⎦  

 
3 The region is shown at right. This will certainly be much easier to deal with in po-

lar coordinates, in which the limits will be r going from 0 to 1 and θ  going from 
π 2−  to π 2 .  Since in polar 2 2 2 ,x y r+ =  the integral (remembering to multi-

ply by r for the Jacobian) is 
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4 The region of integration is shown at right. The circle can be represented in polar 

coordinates by 2sinr θ=  and the shaded part is given by π 2 ,π .θ ∈⎡ ⎤⎣ ⎦  The in-

tegrand is transformed by cosx r θ=  and sin :y r θ=  ( )( )22 cos sinxy r rθ θ→  
3 2cos sin ,r θ θ=  which we multiply by r for the Jacobian to make the integral 
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5 The region of integration is shown at right. Mass m is given by ( ), ,m x y dAδ= ∫∫  

which in this case is ( )
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+∫ ∫  Finding the x-coordinate of the center 

of mass, ,x  requires ,yM  the region’s moment about the y-axis. To find this, we 

multiply that very same integrand by x (the distance from the y-axis): 
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6 The region is shown at right. Mass m is given by ( ), , ,m x y z dVδ= ∫∫∫  but 

since the question requires cylindrical coordinates we must rewrite 
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= =  In cylindrical 

coordinates, the (top part of the) sphere on top is given by 220z r= −  
and the paraboloid on the bottom is represented by 2 .z r=  Remember 
to multiply by r for the Jacobian and notice that the top and bottom 
boundaries of the region intersect in a circle of radius 2; the integral is 

then 
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7 The region is shown at right. From the diagram, the integral can be written as 
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8 The figure 8cosρ ϕ=  is a sphere of radius 4 ( 8 2)=  tangent to the yz-plane and 

centered about the x-axis; that is, it is centered at ( )0,0,4 .  The integrand can 

be separated into ( )( )2cos sin ,d d dρ ϕ ρ ϕ ρ ϕ θ  which are z and dV, respectively. 

The z represents the distance from the xy-plane, so the integral represents the 
moment about the xy-plane of the aforedescribed sphere with uniform density. 
 

9a The region is shown at right.  
9b Solving for x and y in terms of u and v gives 2 3 1 3x u v− −=  and 1 3 2 3 .y u v− −=  Then 
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9c The curves transform as follows: 
2y x=  →  1 3 2 3 4 3 2 3u v u v− − − −=  ⇒  1u =  

22y x=  →  1 3 2 3 4 3 2 32u v u v− − − −=  ⇒  2u =  
2x y=  →  2 3 1 3 2 3 4 3u v u v− − − −=  ⇒  1v =  

24x y=  →  2 3 1 3 2 3 4 34u v u v− − − −=  ⇒  4v =  
The integrand, since we are simply finding the area of a region, is the (absolute value of the) Jacobian, with the 

limits we established above. We are therefore concerned with 
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Bonus Problem A sketch of the region is shown at right. Parts of it have 
been cut away to make the region in question clear. These problem is 
best solved in cylindrical coordinates, in which the first two given 
bounding surfaces become 2z r=  and 24 .z r=  This means r will be 

going from 2z  to .z  Clearly z goes from 1 to 4 and θ  from 0 to 
2π,  so the integral (remembering to include a factor of r for the Jacobi-

an) is 
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