Multivariable Calculus Review Problems — Chapter 17, part 2

Things to Know and Be Able to Do

- Everything from part one of this chapter
- > Apply surface integration to parameterized surfaces and understand the uses and meanings of this technique
- Understand the distinction between orientable and nonorientable surfaces, determine nonanalytically whether a surface is orientable or not, and understand why this is significant in the context of vector calculus
- > Understand and use Stokes' Theorem and interpret it as a generalization of Green's Theorem
- Understand and use the Divergence Theorem (also known as Gauss's Theorem)

Practice Problems

You may use a calculator to work these problems. The original test, of course, required that you show relevant work. 1 A surface consists of the portion of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 4. The area density of any point on this surface is given by $\sigma(x, y, z) = 10 - z$ measured in grams per square meter. Use a surface integral to find the mass of the surface.

2 The velocity field of a fluid is given by $\mathbf{F}(x, y, z) = 2x\hat{\mathbf{i}} + 2y\hat{\mathbf{j}} + 3z\hat{\mathbf{k}}$.

2a Let S be the surface that is that portion of the paraboloid $z=5-x^2-y^2$ inside the cylinder $x^2 + y^2 = 4$. Find the flux of F across S in the direction of the outward-pointing normal. (This is not a closed surface, so the Divergence Theorem does not apply. You must apply the definition of flux through a surface.)

2b Let *R* be the surface formed by the section of the plane z = 1 inside the cylinder $x^2 + y^2 = 4$. Find the flux of **F** across *R* in the direction of the downward-pointing normal. (Again, the Divergence Theorem does not apply.) **2c** Now consider the closed surface that is the union of the two surfaces given in parts **a** and **b**; that is, the union of the paraboloid $z = 5 - x^2 - y^2$ inside the cylinder $x^2 + y^2 = 4$ along with its circular bottom. Use the Divergence Theorem to find the flux of **F** across this closed surface.

2d Describe how the answers to parts **a**, **b**, and **c** are related and why this is so.

3 Find the circulation counterclockwise around the triangle with vertices (1,0,0), (0,2,0), and (0,0,3) that is in the vector field $\mathbf{F}(x, y, z) = -2xy\hat{\mathbf{i}} + x^2\hat{\mathbf{j}} + 4x\hat{\mathbf{k}}$.

4 Use a parameterization to find the flux due to the vector field $\mathbf{F}(x, y, z) = y\hat{\mathbf{i}} + z\hat{\mathbf{j}} - \hat{\mathbf{k}}$ outward (normally away from the *z*-axis) through the paraboloid $z = x^2 + y^2$ between the planes z = 1 and z = 3.

Answers

1 108 $\sqrt{2}\pi$	2b -12π	2d part c is the sum of parts	3 –4/3
2a 68π	2c 56π	a and b	4 –2π

Solutions

1 Parameterize the surface, shown at right, with $\mathbf{r} = \langle r\cos\theta, r\sin\theta, r \rangle$ for $r \in [1,4]$ and $\theta \in [0,2\pi)$. Then $\partial \mathbf{r}/\partial r = \langle \cos\theta, \sin\theta, 1 \rangle$ and $\partial \mathbf{r}/\partial \theta = \langle -r\sin\theta, r\cos\theta, 0 \rangle$ meaning $\frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta} = \langle -r\cos\theta, -r\sin\theta, r \rangle$ which gives $\left\| \frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta} \right\| = |r|\sqrt{2}$. The density function ρ can be written as $\rho(x, y, z) = 10 - z \rightarrow \rho(r, \theta, z) = 10 - r$, and the mass of the surface S is given by evaluating $\iint_{S} \rho dS = \int_{0}^{2\pi} \int_{1}^{4} (10 - r)\sqrt{2} |r| dr d\theta = 108\sqrt{2\pi}$.

- 2a We begin by parameterizing the surface as $\mathbf{r} = \langle r\cos\theta, r\sin\theta, 5 r^2 \rangle$ for $r \in [0,2]$ and $\theta \in [0,2\pi)$. This surface is shown at right. This gives us $\partial \mathbf{r}/\partial r$ $= \langle \cos\theta, \sin\theta, -2r \rangle$ and $\partial \mathbf{r}/\partial \theta = \langle -r\sin\theta, r\cos\theta, 0 \rangle$ so $\frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta} = \langle 2r^2\cos\theta, 2r^2\sin\theta, r \rangle$. The integral to find the flux is $\iint_{S} \mathbf{F} \cdot \left(\frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta}\right) dS$, so we must write F in terms of r and θ : $\mathbf{F} = \langle 2r\cos\theta, 2r\sin\theta, 3(5-r^2) \rangle$. The integral thus becomes $\int_{0}^{2\pi} \int_{0}^{2} \langle 2r\cos\theta, 2r\sin\theta, 15 - 3r^2 \rangle \cdot \langle 2r^2\cos\theta, 2r^2\sin\theta, r \rangle dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} (r^3 + 15r) dr d\theta = 68\pi$.
- **2b** This (rather simple) surface is shown at right. It is parameterized as $\mathbf{r} = \langle r \cos \theta, r \sin \theta, 1 \rangle$ with $r \in [0,2]$ and $\theta \in [0,2\pi)$. Here $\partial \mathbf{r} / \partial r = \langle \cos \theta, \sin \theta, 0 \rangle$ and $\partial \mathbf{r} / \partial \theta = \langle -r \sin \theta, r \cos \theta, 0 \rangle$ so $\frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta} = \langle 0, 0, r \rangle$. Written in terms of r and θ , $\mathbf{F} = \langle 2r \cos \theta, 2r \sin \theta, 3 \rangle$, so using the same type of integral gives $\int_{0}^{2\pi} \int_{0}^{2} \langle 0, 0, r \rangle \cdot \langle 2r \cos \theta, 2r \sin \theta, 3 \rangle dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} 3r dr d\theta = 12\pi$. However, the problem asks for the *downward* orientation; we have found the upward orientation, so we negate our answer to give -12π .
- **2c** The union of the surfaces is shown at right. The divergence of **F**, $\nabla \cdot \mathbf{F}$, is calculated as follows: $\nabla \cdot \mathbf{F} = \langle \partial/\partial x, \partial/\partial y, \partial/\partial z \rangle \cdot \langle 2x, 2y, 3z \rangle = 2 + 2 + 3 = 7$. We use cylindrical coordinates, in which $z \in [1, 5 r^2]$, $r \in [0, 2]$, and $\theta \in [0, 2\pi)$. Remembering the extra factor of r due to the Jacobian, we evaluate the integral $\int_{0}^{2\pi} \int_{0}^{2} \int_{1}^{5-r^2} 7r dz dr d\theta = 56\pi.$

2d Naturally, the flux through a union of two surfaces would be the sum of the flux through each surface; indeed, generally, the flux through a union of surfaces is the sum of the flux through each of the surfaces. Therefore we have found, as expected that $56\pi = 68\pi + (-12\pi)$. In other words, the answer to c is the sum of the answers to a and b.

3 The triangle is shown at right. The most convenient way to deal with this problem is with Stokes' Theorem, which states that $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$

We evaluate
$$\nabla \times \mathbf{F}$$
: $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ -2xy & x^2 & 4x \end{vmatrix} = \langle 0, -4, 4x \rangle$. Now we must find a

surface normal. Let the given points be *A*, *B*, and *C* respectively; we will be finding the plane that contains all three using the facts $\overrightarrow{AB} = \langle -1, 2, 0 \rangle$ and $\overrightarrow{AC} = \langle -1, 0, 3 \rangle$. Thus $\overrightarrow{AB} \times \overrightarrow{AC} = \langle 6, 3, 2 \rangle$; this is a normal vector to the plane containing all three points. Let this be **n**; then we have a unit vector $\hat{\mathbf{n}} = \frac{\langle 6, 3, 2 \rangle}{\|\langle 6, 3, 2 \rangle\|} = \frac{\langle 6, 3, 2 \rangle}{7} = \langle 6/7, 3/7, 2/7 \rangle$. The shaded region in the graph represents the area over which we must integrate $(\nabla \times \mathbf{F}) \cdot d\mathbf{S}$; it is given by $y \in [0, 2 - 2x]$ and $x \in [0, 1]$, so the integral is $\int_{0}^{1} \int_{0}^{2-2x} \langle 0, -4, 4x \rangle \cdot \langle 6/7, 3/7, 2/7 \rangle dy dx = \int_{0}^{1} \int_{0}^{2-2x} (\frac{8}{7}x - \frac{12}{7}) dy dx$ = -4/3.

4 The surface is shown at right; a convenient parameterization is $\mathbf{r} = \langle r \cos \theta, r \sin \theta, r^2 \rangle$. In this case, $r \in [1,\sqrt{3}]$ and $\theta \in [0,2\pi)$. Now we can find $\partial \mathbf{r}/\partial r = \langle \cos \theta, \sin \theta, 2r \rangle$ and $\partial \mathbf{r}/\partial \theta = \langle -r \sin \theta, r \cos \theta, 0 \rangle$ which give $\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} = \langle -2r^2 \cos \theta, -2r^2 \sin \theta, r \rangle$. Writing F in terms of our parameters results in $\mathbf{F} = \langle r \sin \theta, r^2, -1 \rangle$. Finding flux in terms of a parameterized surface takes the form $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot \left(\frac{\partial \mathbf{r}}{\partial r} \times \frac{\partial \mathbf{r}}{\partial \theta}\right) dA$, which here is $\int_{0}^{2\pi} \int_{1}^{\sqrt{3}} \langle r \sin \theta, r^2, -1 \rangle \cdot \langle -2r^2 \cos \theta, -2r^2 \sin \theta, r \rangle dr d\theta = \int_{0}^{2\pi} \int_{1}^{\sqrt{3}} (-2r^3 \sin \theta \cos \theta - 2r^4 \cos \theta - r) dr d\theta$ $= -2\pi$.

z