AP Calculus BC Review — Derivatives, Part I

Things to Know

- \triangleright The derivative of a function at a point may be interpreted as the slope of a tangent line to the graph at that point.
- \triangleright The derivative of a function is itself a function.
- ▶ The derivative of a function $f(x)$ with respect to *x* is denoted as $\frac{df}{dx}$ *dx* or $f'(x)$.
- \triangleright The derivative of a function $f(x)$ at $x = a$ is denoted as *x a df* $dx|_{x=}$ or $f'(a)$.
- A derivative of a function $f(x)$ with respect to *x* at a point $x = a$ is defined as $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ or

$$
f'(a) = \lim_{b \to 0} \frac{f(a+b) - f(a)}{b}
$$
; these definitions are equivalent given the definition $b = x - a$.

- \triangleright Be able to evaluate limits by recognizing them as derivatives of either of the forms above
- \triangleright Not all functions are differentiable; for example, $f(x) = |x|$ is nondifferentiable at $x = 0$ because it is "sharp" at that point. Continuity is necessary but not sufficient for differentiability.
- \triangleright The Sum Rule: $\frac{d}{dx}(f(x) + g(x)) = \frac{df}{dx} + \frac{dg}{dx}$

$$
\triangleright \quad \text{The Constant Multiple Rule: } \frac{d}{dx}(cf(x)) = c\frac{df}{dx}
$$

- ¾ The Sum Rule may be combined with the Constant Multiple Rule to form the Difference Rule: $\frac{d}{dx}(f(x)-g(x))=\frac{df}{dx}-\frac{dg}{dx}$
- Fine Product Rule: $\frac{d}{dx}(f(x)g(x)) = f(x)\frac{dg}{dx} + g(x)\frac{df}{dx}$
- Fine Quotient Rule: $\frac{d}{dx} \left(\frac{f(x)}{f(x)} \right)$ (x) $(x) \frac{dy}{dx} - f(x)$ $(x)^2$ $d\int f(x) dx$ $g(x) \frac{df}{dx} - f(x) \frac{dg}{dx}$ $dx(g(x))$ $g(x)$ $\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{df}{dx} - f(x)}{g(x)}$ $(g(x))$ (convenient mnemonic: "low dee-high minus high deelow/draw a line and square below")
- ≻ The Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$ and its derivation for positive integers *n* with the Binomial Theorem (you needn't be able to do it, but you should understand it). Know that this is valid for all real *n* even though we have only proven it for the integers.
- \triangleright Important limits: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$ *x* $\rightarrow 0$ χ $\frac{-1}{-} = 0$
- \triangleright The derivatives of trigonometric functions (you may find it easier to memorize only the first three and derive the latter three when necessary)
	- $\int \frac{d}{dx} (\sin x) = \cos x$ $\int \frac{d}{dx} (\cos x) = -\sin x$ \int $\frac{d}{dx} (\tan x) = \sec^2 x$ \circ $\frac{d}{dx}(\sec x) = \tan x \sec x$ $\int \frac{d}{dx} (\csc x) = -\cot x \csc x$ o $\frac{d}{dx} (\cot x) = -\csc^2 x$
- ¾ Find elementary antiderivatives by recognizing functions as derivatives using any of the following rules or combinations thereof: Power Rule, Product Rule, Quotient Rule. Remember to add a constant.

Practice Problems

Do not use a calculator.

1 Find each derivative.

a Find
$$
f'(x)
$$
 if $f(x) = 4\cos x - \frac{5}{x^3} + \pi$
\n**b** Find $\frac{dp}{dx}$ if $p = \frac{\cos x}{1 + x^2}$
\n**c** Find $h'(x)$ if $h(x) = 2x^{\sqrt{3}} + \csc x + \frac{x^4}{6}$
\n**d** Find $\frac{dy}{dx}$ if $y = \tan x \csc x$
\n**e** Find $\frac{dx}{dt}$ if $x = \frac{-9}{\sqrt[4]{t^5}} + \sec t - \frac{\sqrt{5}}{\pi}$

2 Suppose that *y* and *z* are differentiable functions of *x*, and suppose that some values for $y(x)$, $z(x)$, $y'(x)$, and $z'(x)$ are given in the table to the right. Find the values of the following derivatives:

3 Evaluate $\lim \frac{x \cos x + \pi}{\ln x}$ $x \rightarrow \pi$ $x - \pi$ *x x* $\rightarrow \pi$ *x* + $\frac{2\pi + \pi}{-\pi}$. Show your work.

4 Find a function $h(x)$ that has the given derivative $h'(x)$.

a
$$
b'(x) = 4x^3 \cot x - x^4 \csc^2 x
$$

\n**b** $b'(x) = \frac{3\sqrt{x} \csc x + 2x\sqrt{x} \csc x \cot x}{\csc^2 x}$

5 The function $f(x) = x^3 + ax^2 + bx + 5$ has a horizontal tangent at the point (3,–13). Show use of calculus to find the constants *a* and *b*.

6 Let $h(t)$ be the number of hours per week that a student taking Calculus BC spends on homework and studying, where *t* is time measured in weeks after September 1. Translate each of the following into a *sentence* about students and homework hours.

a
$$
h(19) = 8
$$
 and $h'(19) = 2$
b $h(36) = 1$ and $h'(36) = -1$

7 Given a graph of $f'(x)$ at right, and $f(3) = -1$.

a Write an equation for the line tangent to the graph of $y = f(x)$ at $x = 3$. **b** Could the line $4x + y = 8$ be the line tangent to the graph of

 $y = f(x)$ at $x = -2$? Why or why not?

c Find the value of *h*'(3), if $h(x) = \frac{f(x)}{x^2 + 1}$. $h(x) = \frac{f(x)}{x^2 + 1}$

8 Given the graph $y = f(x)$ shown, graph the function $y = f'(x)$ on the axes provided.

 \mathbf{x}

9 If
$$
f(x) = \frac{x}{\tan x}
$$
, then $f'(\pi/4) =$
\na 2\nb $\frac{1}{2}$ \nc $1 + \frac{\pi}{2}$ \nd $\frac{\pi}{2} - 1$ \ne $1 - \frac{\pi}{2}$

10 An equation of the line tangent to the graph of $y = x - \cos x$ at the point (0,1) is

a $y = 2x + 1$ **b** $y = x + 1$ **c** $y = x$ **d** $y = x - 1$ **e** $y = 0$ 11 $\lim_{b \to 0} \frac{(-2 + b)^4 - 16}{b}$ *h* \rightarrow ⁰ *h* $\frac{-2 + b)^4 - 16}{1} =$ **a** 64 **b** –32 **c** 16 **d** 0 **e** undefined

12 If u , v , and w are nonzero differentiable functions, then the derivative of $\frac{uv}{w}$ *w* is

a
$$
\frac{uv' + u'v}{w'}
$$

d $\frac{u'vw + uv'w + uvw'}{w^2}$
b $\frac{u'v'w - uvw'}{w^2}$
e $\frac{uv'w + u'vw - uvw'}{w^2}$
c $\frac{uvw' - uv'w - u'vw}{w^2}$

13 What is the instantaneous rate of change at $x = 2$ of $f(x) = \frac{x^2 - 2}{4}$ 1 $f(x) = \frac{x}{x}$ $=\frac{x^2-2}{x-1}$? **a** –2 **b** $\frac{1}{6}$ $c \frac{1}{2}$ $\frac{1}{2}$ **d** 2 **e** 6

Answers to Practice Problems

Solutions to Practice Problems

1a The derivative of cos *x* is −sin *x* and $-\frac{5}{x^3}$ *x* $-\frac{3}{3}$ may be written as −5*x*^{−3}. Then applying the Constant Multiple Rule to the first part and the Power Rule to the second (while realizing that the derivative of the constant π is zero), $f'(x) = -4 \sin x + 15 x^{-4}$.

1b Let
$$
u = \cos x
$$
 and $v = 1 + x^2$; then $u' = -\sin x$ and $v' = 2x$, so applying the Quotient Rule to $p = \frac{u}{v}$,
\n
$$
\frac{dp}{dx} = \frac{-\sin x (1 + x^2) - 2x \cos x}{(1 + x^2)^2}
$$
. You may simplify this if you are so inclined, but it's unnecessary.

1c The derivative of the first term may be found using the Power Rule: $\frac{d}{dx}(2x^{\sqrt{3}})=2\sqrt{3}x^{\sqrt{3}-1}$. The derivative of the second term is $\frac{d}{dx}(\csc x) = -\cot x \csc x$, and the derivative of the last term is found by the Power Rule again: $\frac{d}{dx}\left(\frac{x^4}{6}\right) = \frac{d}{dx}\left(\frac{1}{6}x^4\right) = \frac{4}{6}x^3 = \frac{2}{3}x^3$. Adding the terms, $b'(x) = 2\sqrt{3}x^{\sqrt{3}-1} - \cot x \csc x + \frac{2}{3}x^3$.

- 1d Let $u = \tan x$ and $v = \csc x$; then $u' = \sec^2 x$ and $v' = -\cot x \csc x$, so applying the Product Rule to $y = uv$, *dy* = tan *x*(−cot *x* csc *x*) + csc *x* sec² *x*. Since tan *x* cot *x* = 1, this is equivalent to $\frac{dy}{dx}$ =−csc *x* + csc *x* sec² *x*.
- **1e** Rewrite the first term as $-9t^{-5/4}$ and apply the Power Rule to get $\frac{d}{dt}(-9t^{-5/4}) = \frac{45}{4}t^{-9/4}$. The derivative of sec*t* is tan tsect and the derivative of $-\frac{\sqrt{5}}{\pi}$ is zero since it's constant, so add everything together to get $\frac{dx}{dt} = \frac{45}{4}t^{-9/4}$ + tan *t* sec *t*.

2a Expand $\frac{d}{dx}(yz)$ with the Product Rule to get $yz' + y'z$ and plug in the relevant values to get 3. 2b Expand $\frac{d}{dx}(\frac{z}{y}) = \frac{y^2}{a^2}$ *yz' – y'z y* $=\frac{yz'-y'z}{z^2}$ and plug in the relevant values to get $\frac{38}{25}$. **3** Recognize this as $\frac{u}{1}$ (*x* cos *x*) π cos *x* $\frac{d}{dx}$ (*x* cos *x* dx $\Big|_{x=}$ and note that $\frac{d}{dx} (x \cos x) = -x \sin x + \cos x$ *dx* $=-x \sin x + \cos x$. Plugging in $x = \pi$ gives -1.

 4 a Note that this looks like a Product Rule expansion, since $\frac{d}{dx}(x^4)=4x^3$ and $\frac{d}{dx}(\cot x)=-\csc^2 x$. Thus an antiderivative is $h(x) = x^4 \cot x + C$ for some constant *C*.

4b Note that this looks like a Quotient Rule expansion, and since the denominator has $csc^2 x$, the denominator of the original function is csc *x*. In the numerator we have $2x\sqrt{x}$ since its derivative is $3\sqrt{x}$, so an antiderivative is $(x) = \frac{2}{x}$ csc $h(x) = \frac{2x\sqrt{x}}{2} + C$ *x* $=\frac{2\lambda\sqrt{\lambda}}{2}+C$ for some constant *C*.

5 A horizontal tangent means that the tangent's slope is zero. The derivative of the given function with respect to *x* is $f'(x) = 3x^2 + 2ax + b$, and we know that $f(3) = -13$, so we can set up the system $\begin{cases} 3 \cdot 3^2 + 2(3) \\ 3 \cdot 3^2 + 2(3) \end{cases}$ 3^{3} 2 $3^3 + 3^2a + 3b + 5 = -13$
 $3 \cdot 3^2 + 2(3)a + b = 0$ *a b* $\int 3^3 + 3^2 a + 3b + 5 = -$ ⎨ $(3 \cdot 3^2 + 2(3)a + b =$ which has the solution $(a, b) = (-4, -3)$.

6a and **6b** are hopefully self-explanatory given the answers above.

7a We can read off the graph that $f'(3) = -5$ and are given that $f(3) = -1$, so we can write in point-slope form $y + 1 = -5(x - 3)$.

7**b** The given line has slope 4, but reading the graph gives $f'(-2) \approx -2.8 \neq 4$, so no.

7c The Quotient Rule gives $b'(x) = \frac{(x^2+1)f'(x) - 2xf(x)}{(x^2+1)^2}$ (x^2+1) 2 2 $1)^2$ $1 f'(x) - 2$ 1 $h'(x) = \frac{(x^2+1)f'(x)-2xf(x)}{(x^2+1)^2}$ $f'(x) = \frac{(x^2+1)f'(x) - (x^2+1)f'(x)}{(x^2+1)^2}$, and the graph shows $f'(3) = -5$. We are given that $f(3) = -1$, so we plug in the necessary values in the Quotient Rule's expression:

 $(3) = \frac{(3^2+1)(-5)-2\cdot3(-1)}{(2-1)^2}$ $(3^{2}+1)$ 2 $(3^2+1)(-5)-2\cdot3(-1)=-\frac{11}{(2^2+1)^2}=-\frac{11}{25}$ $3^2 + 1$ 25 *h* $f'(3) = \frac{(3^2+1)(-5)-2\cdot3(-1)}{(3^2+1)^2} = -\frac{11}{25}.$

8 The function has slope 4 on $(-3, -2)$, slope 0 on $(-2, 1)$, and slope -1 on $(1,3)$, and is undefined elsewhere, so the graph of its derivative is as shown to the right.

9 Use the Quotient Rule with $u = x$ and $v = \tan x$. Therefore $u' = 1$ and $v' = \sec^2 x$, giving $f'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x}$. *x* $f(x) = \frac{\tan x - x \sec^2 x}{x^2}$. Now we can plug in $x = \frac{\pi}{4}$, which gives $f'(\frac{\pi}{4}) = 1 - \frac{\pi}{2}$, choice E.

10 $y' = 1 + \sin x$; plugging in $x = 0$, $y'(0) = 1 + \sin(0) = 1$. Since *y*(0) = 1, the equation in point-slope form is $y-1=x$, which is equivalent to choice B.

11 Recognize this as $\frac{u}{1} (x^4)$ 2 . *x d x* $\left. dx\right.$ $\left. \right.$ $\left. \right|_{x=-}$ Apply the Power Rule to find $\frac{d}{dx}(x^4) = 4x^3$ and plug in $x = -2$ to get -32, choice B.

12 Let $f = uv$, so $f' = u'v + uv'$. The derivative of the quotient $\frac{f}{w}$ is thus $\frac{f'w - fw'}{w^2}$. $\frac{f_w - f_w'}{2}$. We substitute what we know for *f* and *f'*, giving $\frac{(u'v + uv')w - uvw'}{w^2} = \frac{u'vw + uv'w - uvw'}{w^2}$, $\frac{f'(v+uv')w-uvw'}{2} = \frac{u'vw+uv'w-uvw'}{2}$, which is equivalent to choice E.

13 Use the Quotient Rule, letting $u = x^2 - 2$ and $v = x - 1$; thus $u' = 2x$ and $v' = 1$, so $f'(x) = \frac{2x(x-1) - (x^2 - 2)}{x^2}$ $(x-1)$ 2 $\frac{2x(x-1)-(x^2-2)}{(x-1)^2}$. *f x* $f'(x) = \frac{2x(x-1) - (x^2 - (x-1))^2}{(x-1)^2}$ Plug in $x = 2$ to get 2, choice D.