AP Calculus BC Review — Derivatives, Part II

Things to Know and Be Able to Do

- Everything that was on the test on the first part of this chapter
- The Chain Rule, used to differentiate composite functions: $\frac{d}{dx}(f \circ g)(x) = g'(x)(f' \circ g)(x)$ or $\frac{d}{dx}(f \circ g)(x) = \frac{df}{dg}\frac{dg}{dx}$
- Use the Chain Rule to differentiate compositions of any number of polynomial, trigonometric, and rational expressions
- Final sector $x^3 + y^2 = xy$ for *y* a function of *x*
- > What higher derivatives are and how to find them
- > Applications of higher derivatives, including that $v = \frac{dx}{dt}$ and $a = \frac{dv}{dt}$ so $a = \frac{d^2x}{dt^2}$
- \blacktriangleright How to find expressions for the n^{th} derivative of functions for which it is concisely possible
- > How to find derivatives of an arbitrary order for trigonometric functions and their transformations—for example, be able to find $\frac{d^{87}}{dx^{87}}\cos(3x)$ in far fewer than 87 steps
- > Solve related rate problems including length dimensions, cross-sectional area, and volume of solids
- > Approximate functions with linearization and differentials
- Formulas for quantities related to differentials: dy = f'(x) dx and $\Delta y = f(x + \Delta x) f(x)$

For Formulas:
$$\varepsilon = |f(x) - L(x)|$$
 and $\varepsilon_{\mathbb{R}} = \frac{\varepsilon}{f(x)}$ for a linearization $L(x)$ to $f(x)$

Practice Problems

Do not use a calculator on questions 1 and 2. Remember that you need not simplify your answers. 1 Find the indicated derivative of each function. You need not simplify your answers.

a Find
$$\frac{dy}{dx}$$
 for $y = (5x^3 - 1)^4 (3 - 4x^2)^7$.
b Find $\frac{dy}{dt}$ for $x^2 y = 36$, $\frac{dx}{dt} = -2$, and $x = 3$.
c Find $\frac{dz}{dx}$ for $z = \tan^4 (\cos(3x^5))$.
d Find $\frac{d^{43}y}{dx^{43}}$ for $y = 3\sin(5x)$.

2 If
$$y = (x^3 + 1)^2$$
, then $\frac{dy}{dx} =$
a $(3x^2)^2$
b $2(x^3 + 1)$
c $2(3x^2 + 1)$
d $3x^2(x^3 + 1)$
e $6x^2(x^3 + 1)$

3 Consider the function $f(x) = (x+1)^k$ where k is a constant.

3a Find the linearization of f(x) at x = 0.

3b Use your answer from part **a** to find the linearization of $f(x) = \sqrt[3]{x+1}$ at x = 0.

4 Find a rule for $f^{(n)}(x)$ if $f(x) = \frac{3}{1-2x}$, showing the steps that lead to your answer.

- 5 A manufacturer contracts to mint coins for the federal government. What *percentage* error in the radius r of a coin can be tolerated if the coin is to weigh within 0.01% of its ideal weight? Assume that the thickness of the coin does not vary, that the coin is a right circular cylinder, and that the weight of a coin is in direct proportion to its volume. The volume of a right circular cylinder of radius r and height h is given by $V = \pi r^2 h$.
- **6** Consider the curve defined by $2y^3 + 6x^2y 12x^2 + 6y = 1$.

6a Show that $\frac{dy}{dx} = \frac{4x - 2xy}{x^2 + y^2 + 1}$.

6b Write an equation of each horizontal tangent line to the curve. **6c** The line through the origin with slope -1 is tangent to the curve at *P*. Find the coordinates of point *P*.

7 [1984AB5] The volume of a right circular cone is increasing at the rate of 28π cubic units per second. At the instant when the radius *r* of the cone is 3 units, its volume is 12π cubic units and the radius is increasing at the rate

of $\frac{1}{2}$ unit per second. The volume of a right circular cone of radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$.

7a When the radius of the cone is 3 units, what is the rate of change of the area of the base?

7b When the radius of the cone is 3 units, what is the rate of change of its height *h*?

7c When the radius of the cone is 3 units, what is the rate of change of the area of its base with respect to its height h?

8 What is the slope of the line tangent to the curve $3y^2 - 2x^2 = 6 - 2xy$ at the point (x, y) = (3, 2)?

a 0 **b** $\frac{4}{9}$ **c** $\frac{7}{9}$ **d** $\frac{6}{7}$ **e** $\frac{5}{3}$

9 The table below gives values of f(x), f'(x), g(x), and g'(x) at selected x. If $h(x) = (f \circ g)(x)$, then $h'(1) = (f \circ g)(x)$, then $h'(1) = (f \circ g)(x)$.

		x	f(x)	f'(x)	g(x)	g'(x)		
		-1	6	5	3	-2		
		1	3	-3	$^{-1}$	2		
		3	1	-2	2	3		
a 5	b 6		c 9		(d 10	e	: 12

10 If the line tangent to the graph of the function f(x) at the point (x, f(x)) = (1,7) passes through the point (x, f(x)) = (-2, -2), then f'(1) =

a -5 b 1 c 3 d 7 e undefined 11 If $\frac{dy}{dx} = \sqrt{1-y^2}$, then $\frac{d^2y}{dx^2} =$ a -2y b -y c $-\frac{y}{\sqrt{1-y^2}}$ d y e $\frac{1}{2}$

Answers to Practice Problems

 $1a \frac{dy}{dx} = 4(5x^3 - 1)^3 15x^2 (3 - 4x^2)^7 + (5x^3 - 1)^4 7(3 - 4x^2)^6 (-8x)$ 1b $\frac{dy}{dt} = \frac{16}{2}$ $1c \frac{dz}{dx} = 4\tan^{3}(\cos(3x^{5}))\sec^{2}(\cos(3x^{5}))(-\sin(3x^{5}))15x^{4}$ $1d \frac{d^{43}y}{d^{43}y} = -3 \cdot 5^{43} \cos(5x)$ **3a** L(x) = kx + 1 **3b** $L(x) = \frac{1}{2}x + 1$ 6a The solution is below. **2** E **6b** $\gamma \approx 0.1652$ **6c** $(x, y) = (-\frac{1}{2}, \frac{1}{2})$ 4 $f^{(n)}(x) = \frac{3 \cdot 2^n n!}{(1-2x)^{n+1}}$ 7a $\frac{dA}{dt} = 3\pi$ units²/s 7b $\frac{db}{dt} = 8$ units/s 5 0.005% $7c \frac{dA}{db} = \frac{3}{8}\pi$ units **8** B **9** D **10** C **11** B

Solutions to Practice Problems

1a Let $u = (5x^3 - 1)^4$ and $v = (3 - 4x^2)^7$, so y = uv. Then the Chain Rule gives $u' = 4(5x^3 - 1)^3 15x^2$ and $v' = 7(3 - 4x^2)^6(-8x)$. The Product Rule is then applied to get y' = u'v + uv', so $y' = 4(5x^3 - 1)^3 15x^2(3 - 4x^2)^7 + (5x^3 - 1)^4 7(3 - 4x^2)^6(-8x)$.

1b Implicit differentiation with respect to *t* gives $2x \frac{dx}{dt}y + x^2 \frac{dy}{dt} = 0$, and the original equation gives y = 4 when x = 3, so we plug in the given values: $2(3)(-2)(4) + 3^2 \frac{dy}{dt} = 0$, so $\frac{dy}{dt} = \frac{16}{3}$.

1c Let $f = 3x^5$, $g = \cos f$, $b = \tan g$, and $j = b^4$. Therefore $\frac{df}{dx} = 15x^4$, $\frac{dg}{df} = -\sin f = -\sin(3x^5)$, $\frac{db}{dg} = \sec^2 g = \sec^2(\cos(3x^5))$, and $\frac{dj}{db} = 4b^3 = 4\tan^3(\cos(3x^5))$. Since $z = (f \circ g \circ h \circ j)(x)$, the Chain Rule gives $\frac{dj}{dx} = \frac{dj}{db}\frac{db}{dg}\frac{dg}{df}\frac{df}{dx} = 4\tan^3(\cos(3x^5))\sec^2(\cos(3x^5))(-\sin(3x^5))15x^4$.

1d The 43rd derivative of sin *x* corresponds to its 3rd derivative. Now $\frac{d^3}{dx^3}(\sin x) = -\cos x$, but we also need to apply the Chain Rule 43 times and multiply by 3, so $\frac{d^{43}}{dx^{43}}(3\sin(5x)) = -3 \cdot 5^{43}\cos(5x)$.

2 Apply the chain rule to get $y' = 2(x^3 + 1)3x^2 = 6x^2(x^3 + 1)$, which is choice E.

3a $f'(x) = k(x+1)^{k-1}$, so $f'(0) = k(1)^{k-1} = k$. Then f(0) = 1, so the linearization is L(x) = kx+1. **3b** This is simply the above case with $k = \frac{1}{3}$, so we plug that in to get $L(x) = \frac{1}{3}x+1$.

4 Consider the table at right. Hopefully, the pattern is apparent: $\frac{n}{f^{(n)}(x)} = \frac{3 \cdot 2^n n!}{(1-2x)^{n+1}}.$ $\frac{1}{(1-2x)^2} = \frac{3 \cdot 2}{(1-2x)^2}$

5 Let *w* signify the weight of the object. Since *w* is proportional to volume, let *k* be the constant of proportionality; then $w = k\pi r^2 h$. Then $\frac{dw}{dr} = 2k\pi rh \Rightarrow dw = 2k\pi rh dr$, and we are given a relative error of 0.0001. This means that $\frac{dw}{w} \le 0.0001$. Plugging in our known values for dw and *w*, $\frac{2k\pi xh}{k\pi r^3 h} = 2\frac{dr}{r}$. So $2\frac{dr}{r} \le 0.0001 \Rightarrow \frac{dr}{r} \le 0.00005$, or 0.005%.

 $\frac{n}{1} \frac{f^{(n)}(x)}{(1-2x)^2} (-2) = \frac{3 \cdot 2}{(1-2x)^2}$ $2 \frac{-2 \cdot 3 \cdot 2}{(1-2x)^3} (-2) = \frac{3 \cdot 2^2 \cdot 2}{(1-2x)^3}$ $3 \frac{-3 \cdot 3 \cdot 2^2 \cdot 2}{(1-2x)^4} (-2) = \frac{3 \cdot 2^3 \cdot 6}{(1-2x)^4}$ $4 \frac{-4 \cdot 3 \cdot 2^3 \cdot 6}{(1-2x)^5} (-2) = \frac{3 \cdot 2^4 \cdot 24}{(1-2x)^5}$

6a The terms on the left side of the equation are differentiated implicitly as follows: $\frac{d}{dx}(2y^3) = 6y^2 \frac{dy}{dx}$, $\frac{d}{dx}(6x^2y) = 12xy + 6x^2 \frac{dy}{dx}$ using the Product Rule, $\frac{d}{dx}(-12x^2) = -24x$, and $\frac{d}{dx}(6y) = 6\frac{dy}{dx}$. On the right side of

the equation,
$$\frac{d}{dx}(1) = 0$$
. Therefore $6y^2 \frac{dy}{dx} + 12xy + 6x^2 \frac{dy}{dx} - 24x + 6\frac{dy}{dx} = 0$, or $\frac{dy}{dx}(6x^2 + 6y^2 + 6) = 24x - 12xy$.
Dividing, $\frac{dy}{dx} = \frac{24x - 12xy}{6x^2 + 6y^2 + 6} = \frac{\cancel{6}(4x - 2xy)}{\cancel{6}(x^2 + y^2 + 1)} = \frac{4x - 2xy}{x^2 + y^2 + 1}$.

6b We want $\frac{dy}{dx} = 0$, meaning that 4x - 2xy = 0. Factoring gives 2x(2-y) = 0, so the Zero Product Property tells us that x = 0 or y = 2. If x = 0, then $2y^3 + 6y = 1 \Rightarrow y \approx 0.1652$. If y = 2, then $16 + 12x^2 - 12x^2 + 12 = 1 \Rightarrow 28 = 1$ which obviously has no solution, so the only horizontal tangent is $y \approx 0.1652$.

6c We have two equations, which can be set up as a system: $\begin{cases} y = -x \\ \frac{4x - 2xy}{x^2 + y^2 + 1} = -1 \end{cases}$. Substituting the first into the second

gives $\frac{4x-2x(-x)}{x^2+(-x)^2+1} = \frac{4x+2x^2}{2x^2+1} = -1$. Multiplying by the denominator gives $4x+2x^2 = -2x^2-1$, which can be solved in any of a number of ways to yield $x = -\frac{1}{2}$, and therefore $y = \frac{1}{2}$. Thus $(x, y) = (-\frac{1}{2}, \frac{1}{2})$.

- 7a We know that $\frac{dV}{dt} = 28\pi$ when r = 3, $V = 12\pi$, b = 4, and $\frac{dr}{dt} = \frac{1}{2}$. Now since $A = \pi r^2$, we can differentiate with respect to time to find $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$. Now we plug in the necessary values: $\frac{dA}{dt} = 2\pi (3)(\frac{1}{2}) = 3\pi$ units²/s.
- 7b Since $V = \frac{1}{3}\pi r^2 h$, we differentiate using the Product Rule (since both r and h depend on t) to find $\frac{dV}{dt} = \frac{2}{3}\pi rh\frac{dr}{dt} + \frac{1}{3}\pi r^2\frac{dh}{dt}$. Then we plug in the known values from the previous part, getting $28\pi = \frac{2}{3}\pi (3)(4)(\frac{1}{2}) + \frac{1}{3}\pi (3)^2\frac{dh}{dt}$. Therefore $\frac{dh}{dt} = 8$ units/s.

 $7c \frac{dA}{db} = \frac{\frac{dA}{dt}}{\frac{db}{dt}} = \frac{3\pi}{8}$ units.

8 Implicit differentiation gives $6y \frac{dy}{dx} - 4x = -2x \frac{dy}{dx} - 2y$, so $\frac{dy}{dx} = \frac{4x - 2y}{2x + 6y} = \frac{2x - y}{x + 3y}$. Plugging in (x, y) = (3, 2) gives

- $\frac{dy}{dx} = \frac{4}{9}$, choice B.
- 9 The Chain Rule says $b'(1) = (f' \circ g)(1)g'(1)$. The table shows that g(1) = -1, so we need to find f'(-1) = 5. Therefore $b'(1) = 5 \cdot 2 = 10$, choice D.

10 We know two points on the line: $(x_0, y_0) = (1,7)$ and $(x_1, y_1) = (-2, -2)$. This is enough to determine the slope of the line: $m = \frac{y_0 - y_1}{x_0 - x_1} = \frac{7 - (-2)}{1 - (-2)} = 3$, choice C.

11 The Chain Rule gives $\frac{d^2 y}{dx^2} = \frac{-2y\frac{dy}{dx}}{2\sqrt{1-y^2}} = -\frac{2y\sqrt{1-y^2}}{2\sqrt{1-y^2}} = -y$, choice B.