AP Calculus BC Review — Applications of Derivatives (Chapter 4)

Things to Know and Be Able to Do

- Definitions of the following in terms of derivatives, and how to find them: critical point, global minima/maxima, local (relative) minima/maxima, inflection point
- > The Mean Value Theorem, including Rolle's Theorem, and how to apply each of them
- > The First Derivative Test and the Second Derivative Test
- Interpretations of concavity in terms of derivatives
- Siven any one of f, f', and f", find characteristics of the others and be able to sketch a graph of y = f(x)
- > Horizontal and slant (oblique) asymptotes and how to find them, including polynomial long division
- Optimization problems including the use of trigonometry (be able to justify your answers, usually by using the Second Derivative Test to show that the relevant point is a minimum when you want a minimum or a maximum when you want a maximum)
- > Newton's Method including iterations thereof *and* its derivation
- Basic antiderivatives using the Sum, Difference, Constant Multiple, Product, Quotient, Power, and Chain Rules (don't forget +C!)

Practice Problems

Problems 1-3 are to be done without the use of a calculator. Problems 4-12 may be done with a calculator. **1** Find the most general antiderivative for each function given.

a
$$f(x) = \sec x \tan x - \cos(2x) + \csc^2 x - 2$$

b $f(x) = 4x^5 - 5\sqrt[3]{x} + \frac{1}{x^2} - \frac{3}{\sqrt[5]{x^7}}$
c $f(x) = 4\tan^3 x \sec^2 x$
d $f(x) = x^3 \cos x + 3x^2 \sin x$

2 (1990AB1) A particle, initially at rest, moves along the x-axis so that its acceleration at any time $t \ge 0$ is given by $a(t) = 12t^2 - 4$. The position of the particle when t = 1 is x(1) = 3.

a Find the value(s) of *t* for which the particle is at rest.

b Write an expression for the position x(t) of the particle at any time $t \ge 0$.

c Find the total distance traveled by the particle from t = 0 to t = 2.

- 3 The function f'(x) with domain [-7,7] is shown at right. For all parts, justify your answer.
 - a On what interval(s) is f(x) increasing?
 - **b** On what interval(s) is f(x) concave down?

c On what interval(s) is f''(x) positive?

- **d** At what value(s) of x does f(x) have a relative minimum?
- **e** At what value(s) of x does f(x) have a point of inflection?
- f If l(x) is the tangent line to the graph of f(x) at the point where x = -3, which is larger—l(-2) or f(-2)? Explain.

4 (1990BC3) Let $f(x) = 12 - x^2$ for $x \ge 0$ and $f(x) \ge 0$.

- a The line tangent to the graph of f at the point (k, f(k)) intercepts the x-axis at x = 4. What is the value of k? Show all of your work.
- **b** An isosceles triangle whose base is the interval from (0,0) to (c,0) has its vertex on the graph of *f*. For what value of *c* does the triangle have maximum area? Justify your answer.
- 5 Find a value of *b* for which the function $y = x^4 + bx^2 + 8x + 1$ has both a horizontal tangent line and a point of inflection at the same value of *x*. Show all of your work.
- 6 A crate, open at the top, has four vertical sides, a square bottom with side length x, a height h, and a volume of 4 m³. If the crate has the least possible surface area, show use of calculus to find its dimensions. Justify your answer.
- 7 The function $f(x) = x^{2/3}$ on $x \in [-8,8]$ does not satisfy the conditions of the Mean Value Theorem because **a** f(0) is not defined. **c** f'(-1) does not exist. **e** f'(0) does not exist. **b** f(x) is not continuous on [-8,8]. **d** f(x) is not defined for x < 0.
- 8 Let f be a function that is differentiable on the open interval $x \in (1,10)$. If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?

 $\mathbf{I}f$ has at least two zeros.

II The graph of f has at least one horizontal tangent.

III For some *c*, 2 < c < 5, f(c) = 3.

a None **b** I only **c** I and II only **d** I and III only **e** I, II, and III

9 If Newton's Method is used to approximate the positive root of $f(x) = x^2 + 2x - 5$, starting with $x_0 = 2$, then the value of x_2 is

- **a** $\frac{1}{4}$ **b** $\frac{2}{5}$ **c** $\frac{29}{20}$ **d** $\frac{3}{2}$ **e** $\frac{33}{20}$
- 10 Let $f(x) = x^3 3x + 1$. In using Newton's Method to approximate the root of f in [1,2], which equation below will find this root (with initial estimate $x_0 = 1.5$)?

a
$$x_{n+1} = x_n - \frac{3x_n^2 - 3}{x_n^3 - 3x_n + 1}$$

b $x_{n+1} = x_n + \frac{3x_n^2 - 3}{x_n^3 - 3x_n + 1}$
c $x_{n+1} = x_n - \frac{x_n^3 - 3x_n + 1}{3x_n^2 - 3}$
e $x_{n+1} = x_n + \frac{x_n^3 - 3x_n + 1}{3x_n^2 - 3}$
e $x_{n+1} = x_n + \frac{x_n^3 - 3x_n + 1}{3x_n^2 - 3}$

11 Which of the following represents the oblique asymptote for $f(x) = \frac{3x^2 - 5x + 2}{x - 4}$?

a y = 3x **b** y = 3x + 4 **c** y = 3x - 17 **d** y = 3x - 5 **e** y = 3x + 7

12 The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f'' is shown at right. For what values of x does the graph of f have a point of inflection?

a 0 and *a* **b** 0 and *m* only **c** *b* and *j* only **d** 0, *a*, and *b* **e** *j* and *k*

Answers

1a $F(x) = \sec x - \frac{1}{2}\sin(2x) - \cot x - 2x + C$	3a (-2,5) \cup (5,7), 3b (-7,-5) \cup (2,5)
1b $F(x) = \frac{2}{3}x^6 - \frac{15}{4}x^{4/3} - \frac{1}{x} + \frac{15}{2}x^{2/5} + C$	$3c(-5,2)\cup(5,7)$, $3dx=-2$
$1c F(x) = \tan^4 x + C$	3e $x \in \{-5, 2, 5\}$, 3f $f(-2)$
1d $F(x) = x^3 \sin x + C$	4a $k = 2$, 4b $c = 4$
2a $t = 0$ and $t = 1$	5 $b = -6$
2b $x(t) = t^4 - 2t^2 + 4$	6 x = 2 and b = 1
2c 8	/ e, 8 e, 9 c, 10 c, 11 e, 12 a

Solutions

- 1a The first term is the derivative of sec x; the second (by the Chain Rule), the derivative of $-\frac{1}{2}\sin(2x)$; the third, the derivative of $-\cot x$; and the -2 simply needs to be multiplied by x. Don't forget the constant. $F(x) = \sec x - \frac{1}{2}\sin(2x) - \cot x - 2x + C.$
- **1b** Rewrite the second through fourth terms as $-5x^{1/3} + x^{-2} 3x^{-7/5}$ and apply the Power Rule for Antiderivatives to the whole thing to get $F(x) = \frac{2}{3}x^6 \frac{15}{4}x^{4/3} \frac{1}{x} + \frac{15}{2}x^{2/5} + C$.
- 1c This is the output of the Chain Rule applied to $\tan^4 x$. Including the constant, $F(x) = \tan^4 x + C$.
- 1d This is the output of the Product Rule applied to x^3 and $\sin x$. Therefore $F(x) = x^3 \sin x + C$.
- 2a Given a(t), we can find v(t) by antidifferentiating a(t). We get $v(t) = 4t^3 4t + C$, and since we know that v(0) = 0, we can solve $0 = 4(0)^3 4(0) + C$ for C = 0. This means $v(t) = 4t^3 4t$. Solving $4t^3 4t = 0$ gives $t \in \{0,1\}$.
- **2b** Since we have v(t) from part **a**, we can find x(t) by antidifferentiating v(t). This gives $x(t) = t^4 2t^2 + C_1$. Since we've been told that x(1) = 3, we can solve $3 = 1^4 - 2(1)^2 + C_1$ for $C_1 = 4$, meaning that $x(t) = t^4 - 2t^2 + 4$.
- **3a** The function is increasing when f'(x) > 0, which is on $(-2,5) \cup (5,7)$.
- **3b** The function is concave down when f'(x) is decreasing, which is on $(-7, -5) \cup (2, 5)$.

- **3c** The second derivative is positive when f'(x) is increasing, which is on $(-5,2) \cup (5,7)$.
- 3d Relative minima occur at values of x such that f'(x)=0 and f'(x) is changing from negative to positive. This situation occurs only at x = -2.
- 3e Points of inflection occur at values of x such that f'(x) has a relative extreme. This situation occurs at x = -5, x = 2, and x = 5.
- 3f The function is concave up from -3 to -2 since f'(x) is increasing on that interval. Therefore the tangent line at an x value will, at a higher value of x still on that interval, have a smaller y-value than the function itself will. Therefore f(-2)>1(-2).
- 4a f'(x) = -2x and x-intercepts occur at values of x such that f(x) = 0. The tangent line to f at (k, f(k)) is y f(k) = -2k(x-k), and plugging in (x, y) = (4, 0), we have -f(k) = 2k(4-k). Since we know $f(k) = 12 k^2$, the equation is $-12 + k^2 = -2k(4-k)$, which is solved for $k \in \{2, 6\}$. However, f(6) = -24 and the function is only defined when its output is nonnegative, so k = 2.
- 4b The isosceles triangle has a base of length c and the x-coordinate of the third point is halfway between 0 and c; that

is, $\frac{c}{2}$. Therefore the triangle has area $A = \frac{1}{2}c \cdot f(\frac{c}{2})$. Plugging in $\frac{c}{2}$ to f gives $A = \frac{1}{2}c\left(12 - \frac{c^2}{4}\right) = 6c - \frac{1}{8}c^3$. We

wish to maximize this, so $\frac{dA}{dc} = 6 - \frac{3}{8}c^2 = 0$ gives $c = \pm 4$, of which only c = 4 is relevant. We justify this by finding $d^2 A$

$$\frac{dA}{dc^2} = -\frac{3}{4}c$$
 and plugging in $c = 4$ to find $\frac{dA}{dc^2}\Big|_{c=4} = -3$, and since -3 is negative, this is a relative maximum.

5 The horizontal tangent means that at some x, y'(x)=0, and the point of inflection means that at (the same) x,

y''(x) = 0. Since $y' = 4x^3 + 2bx + 8$ and $y'' = 12x^2 + 2b$, we can set up the system $\begin{cases} y = x^4 + bx^2 + 8x + 1\\ 0 = 4x^3 + 2bx + 8\\ 0 = 12x^2 + 2b \end{cases}$ which

solves to (x, y) = (1, 4), and more importantly, b = -6.

6 The volume is $V = x^2 h$ and since V = 4, we know $h = \frac{4}{x^2}$. The surface area is $A = x^2 + 4hx$, but using our known $h = x^2 + 4\left(\frac{4}{x^2}\right)x = x^2 + \frac{16}{x}$. We wish to minimize this, so $\frac{dA}{dx} = 2x - \frac{16}{x^2} = 0$ gives x = 2. We justify this by finding $\frac{d^2A}{dx^2} = 2 + \frac{32}{x^3}$. Plugging in x = 2 gives $\frac{d^2A}{dx^2}\Big|_{x=2} = 6$ and since 6 > 0, this is a relative minimum.

- 7 Option **a** is invalid because f(0) exists (and is equal to 0). Option **b** is not true. The derivative is $f'(x) = \frac{2}{3}x^{-1/3}$, so **c** is invalid; $f'(-1) = -\frac{2}{3}$. Option **d** is also not true. This leaves option **e**, which is true: finding f'(0) would require dividing by zero. Therefore **e** is correct.
- 8 I is true because, since f(2)=-5 and f(5)=5, f must be zero somewhere between 2 and 5 by the Intermediate Value Theorem; likewise, since f(5)=5 and f(9)=-5, f must be zero somewhere between 5 and 9. (Note that f being differentiable means that f is continuous and thus meets the condition of the Intermediate Value Theorem.) II is true by Rolle's Theorem: since f(2)=f(9), there exists some c between 2 and 9 such that f'(c)=0.

III is true by the Intermediate Value Theorem: since f(2) = -5 and f(5) = 5, between 2 and 5, *f* assumes every value between -5 and 5. Since I, II, and III are all true, the answer is **e**.

9 Newton's Method gives
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
. Since $f'(x) = 2x + 2$, $x_1 = 2 - \frac{2^2 + 2(2) - 5}{2(2) + 2} = \frac{3}{2}$ and $x_2 = \frac{3}{2} - \frac{f(\frac{3}{2})}{f'(\frac{3}{2})} = \frac{3}{2} - \frac{(\frac{3}{2})^2 + 2(\frac{3}{2}) - 5}{2(\frac{3}{2}) + 2} = \frac{3}{2} - \frac{1}{20} = \frac{29}{20}$. This is choice **c**.

10 Newton's Method gives
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
. Since $f'(x) = 3x^2 - 3$, $x_{n+1} = x_n - \frac{x^3 - 3x_n + 1}{3x_n^2 - 3}$, choice c.

11 Carry out the long division as follows:

$$\frac{3x + 7 \text{ R30}}{x - 4)3x^2 - 5x + 2}$$

$$\frac{-(3x^2 - 12x)}{7x + 2}$$

$$\frac{-(7x - 28)}{30}$$

The quotient is 3x + 7, which corresponds to option **e**.

12 Points of inflection occur at values of x such that f''(x) = 0 and is changing sign. This situation is at 0 and a only.