AP Calculus BC Review — Integrals (Chapter 5)

Things to Know and Be Able to Do

- \triangleright Know what a definite integral represents, including the concept of signed area
- ¾ Basic applications of definite integrals, including the relationships between position, speed, and acceleration
- ▶ Theorem 2.2.3 Theorem 3.3.4 shows that the sum of the following equations, we have:\n$\int_{a}^{b} f(x) \, dx$\nusing <i>n</i> subintervals:\n$\int_{a}^{b} f(x) \, dx$\nusing <i>n</i> subintervals:\n$\int_{a}^{b} f(x) \, dx$

$$
\text{O} \quad \text{Left sum: } \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a + \frac{i(b-a)}{n}\right)
$$

$$
\text{O} \quad \text{Right sum: } \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{i(b-a)}{n}\right)
$$

$$
\text{O} \quad \text{Midpoint sum: } \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a + \frac{\left(i + \frac{1}{2}\right)\left(b-a\right)}{n}\right) \text{ or } \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{\left(i - \frac{1}{2}\right)\left(b-a\right)}{n}\right)
$$

- o Trapezoidal sum: average of the left and right sums
- \triangleright Know what each part of those expression means and why it works
- ^¾ The Riemann sum can be turned into a definite integral by taking lim*n*→∞
- ¾ Understand that these definite integrals *can* be evaluated from "first principles"; that is, expressions like $(n+1)$ 1 1 2 *n i* $i = \frac{n(n)}{n}$ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. *i* $i^2 = \frac{n(n+1)(2n)}{6}$ $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. However, you don't necessarily need to be able to do this. The

first of those expressions is definitely a good thing to know, though.

- \triangleright Properties of the definite integral:
	- o $\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx$

$$
\circ \quad \int_a^a f(x) dx = 0
$$

$$
\circ \int_a^b c \, dx = c(b-a)
$$

$$
\circ \int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx
$$

- o $\int_a^b cf(x)dx = c \int_a^b f(x)dx$
- o $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$ if *b* is between *a* and *c*
- o Most of these are common sense. Use common sense.

▶ The Fundamental Theorem of Calculus, Part One: $\frac{d}{dx}\int_a^xf(t)dt = f(x)$ for any constant *a*

- o Understand the proof and how to apply this, including if the upper limit isn't just *x* but is a function
- ▶ The Fundamental Theorem of Calculus, Part Two: $\int_a^b f'(x) dx = f(b) f(a)$
	- o Understand the proof and how to apply this. Especially because 80% of the rest of the course is applying this.
- ¾ Indefinite integrals are just antiderivatives in disguise. They're notated like definite integrals, but without limits. Don't forget +*C*.
- ¾ *u*-substitution: Best understood by example; see pages 360–363.

Practice Problems

Problems 1–5 may be done with the use of a calculator; when this test was originally administered, there was a 20-minute time limit on that section. Problems 6–12 should be done without a calculator.

1 Rocket *A* has positive velocity $v(t)$ after being launched upward from an initially height of 0 ft at time $t = 0$. The velocity of the rocket is recorded for selected values of *t* over the interval $0 \le t \le 80$ s, as shown in the table below.

t [s] 0 10 20 30 40 50 60 70 80 *v t*() ⎡ ⎤ ft s ⎣ ⎦ 5 14 22 29 35 40 44 47 49

a Find the average acceleration of rocket *A* over the time interval $0 \le t \le 80$ s. Indicate units of measure.

b Use a midpoint Riemann sum with 4 subintervals of equal length to approximate $\int_{0}^{80} v(t)dt$. Indicate units of measure, and explain the meaning of the integral in terms of the rocket's flight.

c Rocket *B* is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{2\pi}}$ ft/s². 1 $a(t) = \frac{3}{\sqrt{t+1}}$ ft/s². At time $t = 0$ s, the initial height of the rocket is 0 ft and the initial velocity is 2 ft/s. Which of the two rockets is traveling faster at time $t = 80$ s? Justify your answer.

2 A car travels on a straight track. During the time interval $0 \le t \le 60$ s, the car's velocity v , measured in ft/s, and acceleration *a*, measured in ft/s², are continuous functions. The table below shows selected values of these functions.

a Approximate $\int_{30~\text{s}}^{60~\text{s}} v(t) dt$ with a left rectangle approximation using the three subintervals determined by the table. Give appropriate units with your answer and explain the meaning of the integral in terms of the car's motion. *Note: the subintervals are not of equal width.*

b Find the exact value of $\int_{0}^{30 \text{s}} a(t) dt$. Give appropriate units with your answer and explain the meaning of the integral in terms of the car's motion.

7 The graph of the function *f* shown below consists of six line segments. Let *g* be given by $g(x) = \int_0^x f(t) dt$.

Graph of *f*

a Find $g(4)$, $g'(4)$, and $g''(4)$.

b Does *g* have a relative minimum, a relative maximum, or neither at $x = 1$? Justify your answer.

c Suppose that *f* is defined for all real numbers *x* and is periodic with a period of length 5. The graph above shows two periods of *f*.

i Given that $g(5) = 2$, find $g(10)$.

ii Write an equation for the line tangent to the graph of *g* at the point where $x = 108$.

8 Given the Riemann sum $\frac{20}{1}$ $\binom{1}{2}$ 1 $\frac{1}{5} \left(2 + \frac{k}{5}\right)^2$, $\sum_{k=1}^{n} 5($ 5 *k* $\sum_{k=1}^{20} \frac{1}{5} \left(2 + \frac{k}{5} \right)$

a If this Riemann sum represents a right rectangle approximation, what area does the sum represent? Be specific. **b** Assuming that the sum is a right rectangle sum, write an expression in summation notation that represents an approximation using *n* rectangles.

c Write a definite integral that represents the exact area expressed in part **a**. Do not evaluate it.

9 Using the substitution $u = 2x + 1$, $\int_0^2 \sqrt{2x+1} dx$ is equivalent to

$$
\mathbf{a} \; \frac{1}{2} \int_{-1/2}^{1/2} \sqrt{u} \, du \qquad \qquad \mathbf{b} \; \frac{1}{2} \int_{0}^{2} \sqrt{u} \, du \qquad \qquad \mathbf{c} \; \frac{1}{2} \int_{1}^{5} \sqrt{u} \, du \qquad \qquad \mathbf{d} \; \int_{0}^{2} \sqrt{u} \, du \qquad \qquad \mathbf{e} \; \int_{1}^{5} \sqrt{u} \, du
$$

$$
10 \frac{d}{dx} \left(\int_0^{x^2} \sin(t^3) dt \right) =
$$
\n
$$
a - \cos(x^6)
$$
\n
$$
b \sin(x^3)
$$
\n
$$
c \sin(x^6)
$$
\n
$$
d 2x \sin(x^3)
$$
\n
$$
e 2x \sin(x^6)
$$

11
$$
\int x^2 \cos(x^3) dx =
$$

\n**a** $-\frac{1}{3} \sin(x^3) + C$ **b** $\frac{1}{3} \sin(x^3) + C$ **c** $-\frac{x^3}{3} \sin(x^3) + C$ **d** $\frac{x^3}{3} \sin(x^3) + C$ **e** $\frac{x^3}{3} \left(\sin \frac{x^4}{4} \right) + C$

Answers

1a 0.55 ft/s² **1b** 2600 ft **1c** *B* **2a** -220 ft **2b** 6 ft/s **3** c **4** d **5** c **6a** $\frac{1}{2006} (3 + 4 \sin x)^{2006} + C$ **6b** $-\frac{3^{3-1}}{1}$ ln3 *x C* $-\frac{3^{\sqrt{3-x^2}}}{\ln 2}$ + C **6c** $\frac{1}{2}(\sin^{-1} x)^2$ + C **6d** $24 + \frac{9}{2}\pi$ **6e** $-\cos 1 + 1$ $7a \frac{g(4)}{3} = 3; g'(4) = 0; g''(4) = -2$ **7b** relative minimum **7ci** 4 7ci $y - 42 = 2(x - 108)$ **8b**

8a an approximation to the area under the graph of $f(x) = x^2$ on the interval $x \in [2,6]$ using 20 right rectangles

8b
$$
\frac{4}{n} \sum_{i=1}^{n} \left(2 + \frac{4i}{n}\right)^2
$$
 8c $\int_{2}^{6} x^2 dx$
9 c 10 e 11 b

Solutions

1a The average acceleration is given by
$$
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{(49 \text{ m/s}) - (5 \text{ m/s})}{(80 \text{ s}) - (0 \text{ s})} = \frac{44}{80} \text{ m/s}^2 = 0.55 \text{ m/s}^2
$$
.

- **1b** The four subintervals are $t \in (0 \text{ s}, 20 \text{ s})$, $t \in (20 \text{ s}, 40 \text{ s})$, $t \in (40 \text{ s}, 60 \text{ s})$, and $t \in (60 \text{ s}, 80 \text{ s})$. The midpoints of these are *t* =10, 30, 50, and 70, respectively. Each subinterval has length 20, and therefore the midpoint approximation is given by $20(v(10 s) + v(30 s) + v(50 s) + v(70 s)) = 20(14 ft + 29 ft + 40 ft + 47 ft) = 2600 ft$. This is the distance traveled by the rocket in its first 80 s of flight.
- **1c** We know from the table that $v_A(80 \text{ s}) = 49 \text{ ft/s}$. To find Rocket *B*'s velocity at 80 s, we take $\int_{0}^{80 \text{ s}}$ $\int_{0}^{80 \text{ s}} \frac{3}{\sqrt{t+1}} dt$. An antiderivative of the integrand (with respect to *t*) is $6\sqrt{t+1}$. This evaluated at $t = 80$ s, is 54 ft/s, and at $t = 0$ s, it is 6 ft/s. The difference is $(54 \text{ ft/s}) - (6 \text{ ft/s}) = 48 \text{ ft/s}$, meaning that Rocket *B*'s speed has *increased* by 48 ft/s in its first 80 s of flight. However, we are also told that $v_B(0 \text{ s}) = 2$ ft/s, so we add this to the 48 ft/s to get v_{B} (80 s) = 50 ft/s. Therefore v_{B} (80 s) > v_{A} (80 s).
- **2a** The three subintervals on the given interval are $t \in (30 \text{ s}, 35 \text{ s})$, $t \in (35 \text{ s}, 50 \text{ s})$, and $t \in (50 \text{ s}, 60 \text{ s})$. The widths of these are 5 s, 15 s, and 10 s, respectively, and their left points evaluate to $v(30 \text{ s}) = -14 \text{ ft/s}$, $v(35 s) = -10$ ft/s, and $v(50 s) = 0 s$, respectively. Therefore the left Riemann sum approximation is given by $(5 s)(-14 ft/s)+(15 s)(-10 ft/s)+(10 s)(0 ft/s) = -220 ft.$ This is the change in position of the car from $t = 30$ s to $t = 60$ s.
- **2b** Because $\int a(t)dt = v(t)$, the Fundamental Theorem of Calculus, Part Two allows us to evaluate $\int_{0}^{30} a(t)dt$ by evaluating $v(30 \text{ s}) - v(0 \text{ s}) = (-14 \text{ ft/s}) - (-20 \text{ ft/s}) = 6 \text{ ft/s}.$
- **3** The expression means that the average value of *f* (*x*) on *x*∈[2,4] is 1. The only function for which that could possibly be true is **c**, since the average value of the function depicted in **a** seems to be in the vicinity of $\frac{5}{3}$; in **b**, $\frac{3}{4}$; and in **d** and **e**, it's pretty clearly exactly 2. Therefore the correct answer is **c**.
- **4** The recurrent 3's indicate that the difference between the limits is 3. This immediately eliminates choices **a** and **b**. Now that the 3's have been explained, the numerators of each term can be factored to $1.3, 2.3, 3.3,$ etc., and the coefficients of 3 represent the index of summation (the "counting variable"). Then the terms of the sum represent x^2 , so the answer is **d**.
- **5** The integral can be split up: $\int_{-3}^{3} f(x) dx + \int_{-3}^{3} 1 dx$. The area of *A* cancels the area of *B*, so $\int_{-3}^{3} f(x) dx = -2$. Then 3 $\int_{-3}^{5} 1 dx$ simply represents the area of a rectangle with height 1 and width 3 – (−3) = 6; this area is 1 · 6 = 6. Therefore the total area is $-2+6=4$, choice **c**.
- **6a** Make the substitution $u = 3 + 4 \sin x$, so $du = 4 \cos x dx$. The integral then becomes $\int u^{2005} du$. By the Power Rule for Antiderivatives, this is $\frac{1}{2006}u^{2006}$ + C. Undoing the *u*-substitution, we have $\frac{1}{2006}(3+4\sin x)^{2006}$ + C.

6b Make the substitution $u = \sqrt{3-x^2}$, so $du = -\frac{x}{\sqrt{3-x^2}}dx$. The integral then becomes $\int -3^u du = \frac{3^u}{\ln 3} + C$. $\int -3^u du = \frac{3^u}{\ln 3} + C$. Reversing the substitution gives $rac{3^{\sqrt{3-x^2}}}{\ln 3}$ + C. *C* − − ⁻ +

- **6c** Make the substitution $u = \sin^{-1} x$, so $du = \frac{dx}{\sqrt{1 x^2}}$. The integral then becomes $\int u du = \frac{1}{2}u^2 + C$. Reversing the substitution gives $\frac{1}{2} \left(\sin^{-1} x \right)^2 + C$.
- **6d** Break the integral up into $\int_{a}^{3} 4 dx + \int_{a}^{3} \sqrt{9-x^2} dx$ $\int_{-3}^{3} 4 dx + \int_{-3}^{3} \sqrt{9-x^2} dx$. The first integral is the area of a rectangle with height 4 and width 6, which is 24, and the second is half the area of a circle of radius 3, which is $\frac{1}{2} (3^2 \pi) = \frac{9}{2} \pi$. Therefore the sum is $24 + \frac{9}{2}\pi$.
- **6e** Make the substitution $u = \ln x$, so $du = \frac{dx}{x}$. The integral then becomes $\int_{\ln(1)}^{\ln(e)} \sin u du = \int_0^1$ $\int_{\ln(1)}^{\ln(e)} \sin u \, du = \int_0^1 \sin u \, du$. Using the Fundamental Theorem of Calculus, Part Two, this is $-\cos u\vert_0^1 = -\cos 1 - (-\cos 0) = -\cos 1 + 1$.
- **7a** *g*(4) is represented by the area under the graph of *f* from 0 to 4. The area from 0 to 2 cancels to 0, and the rest is a trapezoid with area 3. $g'(4)$ is represented by $f(4)$ per the Fundamental Theorem of Calculus, Part One, and $f(4) = 0$. Finally, $g''(4) = f'(4) = -2$.
- **7b** Since $g'(x) = f(x)$ and $f(x)$ changes sign at $x = 1$, there is a relative extreme at $x = 1$. Specifically, $f(x)$ goes from negative to positive, this is a local minimum.
- **7ci** Each period adds an area of 2, because the rest of the area cancels (negative and positive signed area). Going from 0 to 10 is two periods, so $g(10) = \int_0^{10} f(x) dx = 2 \cdot 2 = 4$.
- **7cii** The slope at $x = 108$ is $g'(108) = f(108) = f(3)$ since *f* has period 5, and $f(3) = 2$. Now the *y*-coordinate of *g*() 108 is determined by the number of periods *f* has gone through at 108. This is 20 full periods (for an area of 40), and additionally it's gone through the first $\frac{3}{5}$ of the next period. This adds another area of 2, for a total area of 42, and a *y*-coordinate of 42. Thus the line has equation $y - 42 = 2(x - 108)$.
- **8a** The 20 indicates that there are 20 rectangles in the approximation. The 2 indicates that the lower limit is 2, and the 5 means that the interval's length is $\frac{20}{5}$ = 4. Therefore the upper limit is 6. The quantity inside the parentheses means that the integrand is x^2 . Therefore the Riemann sum is an approximation to $\int_2^6 x^2 dx$ using 20 right rectangles.

8b Recall that a right rectangle approximation to $\int_a^b f(x)dx$ takes the form $\frac{b-a}{n}\sum_{i=1}^n f\left(a+\frac{i(b-a)}{n}\right)$. *n i* $\frac{b-a}{2}\sum_{i=1}^{n} f\left(a + \frac{i(b-a)}{2}\right)$ $\frac{-a}{n} \sum_{i=1}^{n} f\left(a + \frac{i(b-a)}{n}\right)$. Plugging in the

relevant pieces gives 2 1 $\frac{4}{2} \sum_{i=1}^{n} \left(2 + \frac{4i}{n} \right)^2$. *i i* $\frac{4}{n} \sum_{i=1}^{n} \left(2 + \frac{4i}{n} \right)$

8c As discussed, this is $\int_{2}^{6} x^2 dx$.

9 Make the substitution: $u = 2x + 1$ gives $du = 2 dx$. Then the integral is $\int_{2x + 1}^{2x + 1} \frac{1}{2} \sqrt{u} du = \frac{1}{2} \int_{2}^{5}$ $\int_{2\cdot 0+1}^{2\cdot 2+1} \frac{1}{2} \sqrt{u} \, du = \frac{1}{2} \int_{1}^{5} \sqrt{u} \, du$. This is choice **c**.

- **10** This requires use of the Fundamental Theorem of Calculus, Part One, and the Chain Rule. It would be $\sin((x^2)^3) = \sin(x^6)$, but we also have to invoke the Chain Rule: the derivative of the upper limit, x^2 , is 2x, by which we multiply $\sin(x^6)$ to get $2x \sin(x^6)$, choice **e**.
- **11** Make the substitution $u = x^3$, so $du = 3x^2 dx$. The integral then becomes $\int \frac{1}{3} \cos u du = \frac{1}{3} \sin u + C = \frac{1}{3} \sin \left(x^3\right) + C$, choice **b**.