AP Calculus BC Review — Applications of Integration (Chapter 6)

Things to Know and Be Able to Do

- Find the area between two curves by integrating with respect to x or y
- > Find volumes by approximations with cross sections: disks (cylinders), washers, and other shapes
- Find volume by cylindrical shells: (radius r, height h, and thickness dr gives volume $dV = 2\pi r h dr$)
- > Find work done using the formula $W = \int F dx$, noting that one common instance of a force is weight

Practice Problems

For all problems, show a correct, labeled diagram and a complete setup of the problem in terms of a single variable. Use correct units where applicable. This is designed to be done with a calculator. Remember, when giving approximate answers, to give three decimal places.

1 Let *R* be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1, as shown in the figure at right.

a Find the area of *R*.

b Find the volume of the solid generated when R is revolved about the horizontal line y = 1.

c The region R is the base of a solid. For this solid, each cross-section perpendicular to the *x*-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

2 A container is in the shape of a regular square pyramid. The height of the

pyramid is 6 ft and the sides of the square base are 4 ft long. The tank is full of a liquid with weight density 68 lb/ft^3 . Find the work done in pumping the liquid to a point 4 ft above the top of the tank.

3 Let *R* be the region in the first quadrant bounded by the graph of $y = x - x^3$ and the *x*-axis. Find the volume of the solid generated when *R* is revolved about the (**a**) *x*-axis and (**b**) *y*-axis

4 If the force F, in ft lb, acting on a particle on the x-axis is given by $F(x) = \frac{1}{x^2}$, then the work done in moving the

particle from x = 1 ft to x = 3 ft is equal to

a 2 ft·lb **b**
$$\frac{2}{3}$$
 ft·lb **c** $\frac{26}{27}$ ft·lb **d** 1 ft·lb **e** $\frac{3}{2}$ ft·lb

5 The base of a solid is a circle of radius *a*, and every plane cross-section perpendicular to one specific diameter is a square. The solid has volume

a
$$\frac{8}{3}a^3$$
 b $2\pi a^3$ **c** $4\pi a^3$ **d** $\frac{16}{3}a^3$ **e** $\frac{8\pi}{3}a^3$

6 The region whose boundaries are $y = 3x - x^2$ and y = 0 is revolved about the x-axis. The resulting solid has volume

a
$$\pi \int_{0}^{3} (9x^{2} + x^{4}) dx$$

b $\pi \int_{0}^{3} (3x - x^{2})^{2} dx$
c $\pi \int_{0}^{\sqrt{3}} (3x - x^{2}) dx$
d $2\pi \int_{0}^{3} y \sqrt{9 - 4y} dy$
e $\pi \int_{0}^{9/4} y^{2} dy$

7 The area of the region enclosed by the graphs of $y = x^2$ and y = x is

a $\frac{1}{6}$ **b** $\frac{1}{3}$ **c** $\frac{1}{2}$ **d** $\frac{5}{6}$ **e** 1

8 When the region enclosed by the graphs of y = x and $y = 4x - x^2$ is revolved about the y-axis, the volume of the solid generated is given by

a
$$\pi \int_{0}^{3} (x^{3} - 3x^{2}) dx$$

b $\pi \int_{0}^{3} (x^{3} - (4x - x^{2})^{2}) dx$
c $\pi \int_{0}^{3} (3x - x^{2})^{2} dx$
d $2\pi \int_{0}^{3} (x^{3} - 3x^{2}) dx$
e $2\pi \int_{0}^{3} (3x^{2} - x^{3}) dx$

9 What is the volume of the solid generated by rotating about the *x*-axis the region enclosed by the graph of $y = \sec x$ and the lines x = 0, y = 0, and $x = \frac{\pi}{3}$?

a
$$\frac{\pi}{\sqrt{3}}$$
 b π **c** $\pi\sqrt{3}$ **d** $\frac{8\pi}{3}$ **e** $\pi \ln(\frac{1}{2}+\sqrt{3})$

10 If the region in the first quadrant bounded between the *y*-axis and the graph of $x = 2y(3-y)^2$ is revolved about the *x*-axis, the volume of the solid generated is given by

$$\mathbf{a} \quad \int_{0}^{3} \pi \left(2y \left(3 - y^{2} \right) \right)^{2} dy \qquad \mathbf{b} \quad \int_{0}^{8} 2\pi x \left(2x \left(3 - x \right)^{2} \right) dx \qquad \mathbf{c} \quad \int_{0}^{8} 2\pi x \left(3 - \sqrt{\frac{x}{2}} \right) dx \\ \mathbf{d} \quad \int_{0}^{3} 4\pi y^{2} \left(3 - y \right)^{2} dy \qquad \mathbf{e} \quad \int_{0}^{8} \pi \left(2x \left(3 - x \right)^{2} \right) dx$$

11 Find the area enclosed by the graphs of $y = x^3 + 2x^2 - 10x - 12$ and y = x.

a
$$\frac{343}{12}$$
 b $\frac{99}{4}$ **c** $\frac{160}{3}$ **d** $\frac{937}{12}$ **e** $\frac{385}{12}$

Answers

1a 0.443	$2 - \frac{8\pi}{2} = 0.220$	4 b	8 e
1b 1.424	$3a - \approx 0.239$ 106	5 d	9 c
1c 1.554	4π	6 b	10 d
2 18496 ft · lb	$3b - \approx 0.838$ 15	7 a	11 d

Solutions

- 1a First we need to find the beginning of the interval over which to integrate, which is the point of intersection of $y = \sqrt{x}$ with $y = e^{-3x}$. Therefore we solve $\sqrt{x} = e^{-3x}$; this cannot be solved for x exactly, but an approximation can be found: 0.239. Since the top function is $y = \sqrt{x}$, the bottom function is $y = e^{-3x}$, and the upper limit is 1, we integrate $\int_{0.239}^{1} (\sqrt{x} e^{-3x}) dx$. This can be evaluated as $\frac{1}{3}e^{-3x} + \frac{2}{3}x^{3/2} \Big]_{0.239}^{1}$ or just plugged into a calculator; the answer is 0.443.
- 1b We find this object's volume using disks centered around the line y=1. Each disk has inner radius $1-\sqrt{x}$ and outer radius $1-e^{-3x}$, so each one has area $dA = \pi \left(\left(1-e^{-3x}\right)^2 \left(1-\sqrt{x}\right)^2 \right)$ and, with thickness dx, volume $dV = \pi \left(\left(1-e^{-3x}\right)^2 \left(1-\sqrt{x}\right)^2 \right) dx$. To find the total volume, we integrate $\int_{0.239}^1 \pi \left(\left(1-e^{-3x}\right)^2 \left(1-\sqrt{x}\right)^2 \right) dx$. Don't bother finding an antiderivative for the integrand; it's really ugly and you'll need to approximate the answer anyway. Your calculator will give you the approximation V = 1.424.
- 1c Each rectangle has width $\sqrt{x} e^{-3x}$ and height $5(\sqrt{x} e^{-3x})$. They each have area $dA = 5(\sqrt{x} e^{-3x})^2$, and if their thickness is dx, each volume is $dV = 5(\sqrt{x} e^{-3x})^2 dx$. The total volume is given by $V = \int_{0.239}^{1} 5(\sqrt{x} e^{-3x})^2 dx$. An approximation to this is V = 1.554.
- 2 Consider a square horizontal "slab" of liquid at a height *h* below the pyramid's apex and with side length *x*. A resulting side view of half the pyramid is shown at right. Clearly, the two triangles are similar, so we can set up the proportion $\frac{h}{x/2} = \frac{6}{2}$, meaning $x = \frac{2}{3}h$. Thus a slab located *h* below the apex has side length $\frac{2}{3}h$, area $dA = (\frac{2}{3}h)^2 = \frac{4}{9}h^2$, and if it has thickness *dh*, volume $dV = \frac{4}{9}h^2 dh$. This means that each slab's weight is $68(\frac{4}{9}h^2 dh) = \frac{272}{9}h^2 dh$. Each has to be lifted a distance *h* to get to the apex and then a further 4 to the desired point, for a total distance of *h* + 4. Therefore the work done to lift each slab is $dW = \frac{272}{9}h^2 dh(4+h)$, and the total work is $\int_0^6 \frac{272}{9}h^2(4+h)dh = 18496$ ft · lb.

R

1

х

3a A diagram of the region is shown at right. The volume can be found by disks $y_{0.5}$ centered around the x-axis; each disk has radius $y = x - x^3$ and thickness dx, for a volume of $dV = \pi (x - x^3)^2 dx$. The object's total volume is then given by $V = \int_0^1 \pi (x - x^3)^2 dx = \frac{8\pi}{105} \approx 0.239$.

3b This requires the method of cylindrical shells, which should be centered around the *y*-axis. Each shell has radius *x*, thickness dx, and height $y = x - x^3$. So each cylinder has volume $dV = 2\pi x (x - x^3) dx$. The total volume is given

by
$$V = \int_0^1 2\pi x (x - x^3) dx = \frac{4\pi}{15} \approx 0.838$$

4 Since $W = \int F dx$ and the particle is moving from x = 1 ft to x = 3 ft under a force of $F = \frac{1}{x^2}$ lb, the total work 1]^{3 ft})

done is
$$\int_{1 \text{ fr}}^{3 \text{ fr}} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{1 \text{ fr}} = \frac{2}{3} \text{ fr} \cdot \text{lb. This is choice } \mathbf{b}.$$

5 The circle is given by $x^2 + y^2 = a^2$, so $x^2 = a^2 - y^2$. Each square has base 2x and height 2x for an area of $(2x)^2 = 4x^2$. Since the squares are parallel to the x-axis, they have thickness dy, and each "slab" has volume $dV = 4x^2 dy$. Fortunately, since we know $x^2 = a^2 - y^2$, we can substitute that in to find $dV = 4(a^2 - y^2)dy$. Then the total volume is $V = \int_{-1}^{4} 4(a^2 - y^2) dy = 4(a^2y - \frac{1}{3}y^3) \Big|_{-1}^{4} = \frac{8}{3}a^3 - (-\frac{8}{3}a^3) = \frac{16}{3}a^3$, choice **d**.

6 The region is shown at right; its left boundary is at x=0 and its right boundary is at $y_3 = 0$ x = 3. The volume of the solid described is found by disks centered around the xaxis; each disk has radius $3x - x^2$. If the disks have thickness dx, each one's volume 2 is $dV = \pi (3x - x^2)^2 dx$, so the total volume is given by $V = \int_0^3 \pi (3x - x^2)^2 dx$. 1 This is choice **b**.

1

2

x

y 2

1

0

0

x 8 The region is shown at right; its left boundary is at x = 0 and its right boundary is at x = 3. We can find the volume of the solid described with cylindrical shells centered around the y-axis. Each shall has radius x, thickness dx, and height $(4x-x^2)-x=3x-x^2$. Therefore the volume of the solid is $2\pi \int_0^3 (3x-x^2)x dx$, or $2\pi \int_{-\infty}^{\infty} (3x^2 - x^3) dx$, choice **e**.

2

area

3

х

is

9 The region is shown at left. We can find the volume of the solid with disks centered around the x-axis. Each disk has radius $y = \sec x$ and thickness dx, so its $dV = \pi \sec^2 x dx.$ volume is The total volume is thus $\int_{0}^{\pi/3} \pi \sec^2 x \, dx = \pi \tan x \Big]_{0}^{\pi/3} = \pi \sqrt{3}, \text{ choice } \mathbf{c}.$

- 10 The region is shown at right. Its lower boundary is y = 0 and its upper boundary is y = 3. Finding the volume described is tricky; we need to use cylindrical shells centered around the x-axis. Each shell has radius y, thickness dy, and height $x = 2y(3-y)^2$. The volume of each shell is given by $dV = 2\pi y (2y(3-y)^2) dy$, so the total volume is $dV = \int_0^3 2\pi y (2y(3-y)^2) dy = 4\pi \int_0^3 y^2 (3-y)^2 dy$, choice **d**.
- 11 The graphs with the *two* regions in question shown are at right. The left boundary of the left region is x = -4, the curves intersect at x = -1, and the right boundary of the right region is x = 3. Since in the left region the "top" function is $y = x^3 + 2x^2 10x 12$ while in the right region the "top" function is y = x, the left region's area is $\int_{-4}^{-1} \left(\left(x^3 + 2x^2 10x 12 \right) x \right) dx = \int_{-4}^{-1} \left(x^3 + 2x^2 11x 12 \right) dx$ and the right's is $\int_{-1}^{3} \left(x \left(x^3 + 2x^2 10x 12 \right) \right) dx = \int_{-1}^{3} \left(-x^3 2x^2 + 11x + 12 \right) dx$. The first integral is evaluated as $\frac{1}{4}x^4 + \frac{2}{3}x^3 \frac{11}{2}x^2 12x \right]_{-4}^{-1} = \frac{99}{4}$, and the second as $-\frac{1}{4}x^4 \frac{2}{3}x^3 + \frac{11}{2}x^2 + 12x \right]_{-1}^{3} = \frac{160}{3}$. The total area is thus $\frac{99}{4} + \frac{160}{3} = \frac{937}{12}$, choice **d**.

