AP Calculus BC Review — Inverse Functions (Chapter 7)

Things to Know and Be Able to Do

- \triangleright How to find an inverse function's derivative at a particular point (page 418)
- \triangleright The following derivatives (including, for the inverse trigonometric ones, how to derive them):
	- \circ $\frac{d}{dx}(b^x) = b^x \ln b$ for $b > 0$
		- **special case:** $\frac{d}{dx}(e^x) = e^x$

$$
\circ \quad \frac{d}{dx} \left(\log_b |x| \right) = \frac{1}{x \ln b} \text{ for } b > 0 \text{ and } b \neq 1
$$

special case: $\frac{d}{dx}(\ln |x|) = \frac{1}{x}$

$$
\begin{array}{ll}\n\text{O} & \frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}} \\
\text{O} & \frac{d}{dx} \left(\cos^{-1} x \right) = -\frac{1}{\sqrt{1 - x^2}} \\
\text{O} & \frac{d}{dx} \left(\cos^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}} \\
\text{O} & \frac{d}{dx} \left(\sec^{-1} x \right) = \frac{1}{x \sqrt{x^2 - 1}} \\
\text{O} & \frac{d}{dx} \left(\sec^{-1} x \right) = -\frac{1}{x \sqrt{x^2 - 1}} \\
\text{O} & \frac{d}{dx} \left(\cot^{-1} x \right) = -\frac{1}{1 + x^2}\n\end{array}
$$

- \triangleright The following antiderivatives and the all-new notation for them:
	- o ln $b^x dx = \frac{b^x}{1 + b^x} + C$ $\int b^x dx = \frac{b}{\ln b} + C$ for $b > 0$ **special case:** $\int e^x dx = e^x + C$ o $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}$ $\frac{dx}{2} = \sin^{-1} x + C$ $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x +$ o $\int -\frac{ax}{\sqrt{1-x^2}} = \cos^{-1}$ $\frac{dx}{\sqrt{2}}$ = $\cos^{-1} x + C$ $\int -\frac{ax}{\sqrt{1-x^2}} = \cos^{-1} x +$ o $\int \frac{ax}{1+x^2} = \tan^{-1}$ $\frac{dx}{2} = \tan^{-1} x + C$ *x* $\int \frac{dx}{1+x^2} = \tan^{-1} x +$ o $\int -\frac{ax}{x\sqrt{x^2-1}} = \csc^{-1}$ $\frac{dx}{2} = \csc^{-1} x + C$ $\int -\frac{ax}{x\sqrt{x^2-1}} = \csc^{-1} x +$ o $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}$ $\frac{dx}{2}$ = sec⁻¹ x + C $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1} x +$ o $\int -\frac{ax}{1+x^2} = \cot^{-1}$ $\frac{dx}{2} = \cot^{-1} x + C$ *x* $\int -\frac{ax}{1+x^2} = \cot^{-1} x +$
- $▶$ The shapes of the graphs of $y = \sin^{-1} x$, $y = \cos^{-1} x$, and $y = \tan^{-1} x$ along with each function's domain and range
- \triangleright l'Hôpital's Rule and when it applies, including how to convert indeterminate forms of types 0 ⋅∞, ∞ − ∞, 0⁰, ∞ ⁰, and 1[∞] into forms to which l'Hôpital's Rule applies

Practice Problems

All questions should be completed without the use of a calculator.

1 Find $\frac{dy}{dx}$ or the other specified derivative for each function given.

a
$$
y = \tan^{-1} \sqrt{x - 1}
$$

\n**b** $y = 7 \log_5 (e^{2x})$
\n**c** $y = (\sin^{-1} x)^4$
\n**d** Given $q = \sec^2 (7^{-2\log_7 t})$, find $\frac{dq}{dt}$
\n**e** Given $z = \frac{2}{x^3} - \frac{1}{x} + 5^{x^3} + 2^e + \ln 8$, find $\frac{dz}{dx}$

2 Find a rule for $f^{(n)}(x)$ if $f(x) = \ln(2x)$.

3 Find a general antiderivative for each function given.

a
$$
f(x) = \frac{1}{x^3} - \frac{1}{x} + \ln(3)3^x + 2^e + \ln 8
$$

\n**b** $f(x) = \frac{2x}{9 + x^2}$
\n**c** $f(x) = \frac{1}{\sqrt{9 - x^2}}$
\n**d** $f(x) = \frac{3x^2 \ln 4 \cdot 4^{\tan^{-1} x^3}}{1 + x^6}$

4 Determine the function $f(x)$ if $f''(x) = (\ln 2)^2 2^x - \frac{1}{x^2}$ and the equation of the tangent line to the graph of *f* at $x = 1$ is $y + 2 = (2 \ln 2)(x - 1)$. Show your work.

5 Evaluate each limit or show that it does not exist. Show your work.

a
$$
\lim_{x \to 0} \frac{\sin^2 x}{\cos(3x) - 1}
$$

b
$$
\lim_{x \to 0} \frac{1 - x^2 - e^{-x^2}}{x^4}
$$

c
$$
\lim_{x \to 0} (1 - 3x)^{2/x}
$$

⁶ A rectangle has its base on the *^x*-axis and two vertices on the curve 2 $y = e^{-x^2}$, the graph of which is shown at right. Find the largest possible area for the rectangle. Justify your answer.

7 If
$$
f(x) = \ln(x + 4 + e^{-3x})
$$
, then $f'(0) = a - \frac{2}{5}$ b $\frac{1}{5}$

8 Find the derivative of $y = 3^{5^{x^2}}$ with respect to *x*.

a $2x \ln 15 \cdot 15^{x^2}$ **c** $2x \ln 3 \cdot 5^{x^2} 3^{5^{x^2}}$ **e** none of these **b** $2x \ln 3 \cdot 3^{5^{x^2}}$ d 2*x* ln 5 · ln 3 · 5^{*x*} $3^{5^{x^2}}$

 $c \frac{1}{4}$

9 Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and $g(2)=1$, find $g'(2)$. **a** $\frac{1}{13}$ **b** $\frac{1}{4}$ **c** $\frac{7}{4}$ **d** 4 **e** 13

10 Which of the following is equivalent to sec cot⁻¹ $\frac{x}{2}$? $\left(\cot^{-1}\frac{x}{3}\right)$

a
$$
\frac{3}{\sqrt{x^2+9}}
$$
 b $\frac{x}{\sqrt{9-x^2}}$ c $\frac{\sqrt{x^2+9}}{3}$ d $\frac{\sqrt{x^2+9}}{x}$ e $\frac{\sqrt{9-x^2}}{x}$

11 Which of the following is the derivative of $f(x) = (\ln x)^x$ with respect to *x*?

a
$$
x(\ln x)^{x-1}
$$
 c $(\ln x)^{x} \ln(\ln x)$ **e** $\frac{x(\ln x)^{x+1}}{x+1}$
b $(\ln x)^{x-1}$ **d** $(\ln x)^{x} \left(\ln(\ln x) + \frac{1}{\ln x}\right)$

12 Find $\lim_{x\to 0^+} \arctan(\ln x)$

a 1 b
$$
\infty
$$
 c $\frac{\pi}{4}$ d $-\frac{\pi}{4}$ e $-\frac{\pi}{2}$

Answers

1a
$$
\frac{dy}{dx} = \frac{1}{2x\sqrt{x-1}}
$$

\n1b $\frac{dy}{dx} = \frac{14}{\ln 5}$
\n1c $\frac{dy}{dx} = \frac{4(\sin^{-1}x)^3}{\sqrt{1-x^2}}$
\n1d $\frac{dq}{dt} = \frac{-4\sec^2(t^{-2})\tan(t^{-2})}{t^3}$
\n1e $\frac{dz}{dx} = -\frac{6}{x^4} + \frac{1}{x^2} + 3x^2 \ln 5 \cdot 5^{x^3}$
\n2f $(x) = \frac{(-1)^{n+1}(n-1)!}{x^n}$
\n2g $f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{x^n}$
\n3a $F(x) = -\frac{1}{2x^2} - \ln|x| + 3^x + 2^x + (\ln 8)x + C$
\n3b $F(x) = \ln(9 + x^2) + C$
\n3c $F(x) = \sin^{-1} \frac{x}{3} + C$
\n3d $F(x) = 4^{\tan^{-1}(x^3)} + C$
\n4f $(x) = 2^x + \ln|x| - x - 3$
\n5a $-\frac{2}{9}$ 5b $-\frac{1}{2}$ 5c e^{-6}
\n6 $\sqrt{\frac{2}{e}}$
\n7 a 8 d 9 b 10 d 11 d 12 e

Solutions

1a Apply the Chain Rule to $(a\circ b)(x)$, letting $a(x) = \tan^{-1} x$ and $b(x) = \sqrt{x-1}$. Then $a'(x) = \frac{1}{x^2}$ 1 $a'(x) = \frac{1}{x^2 + 1}$ and $b'(x) = \frac{1}{2\sqrt{x-1}}$, so $\frac{d}{dx}(a \circ b)(x) = \frac{1}{\sqrt{x-1}^2 + 1} \cdot \frac{1}{2\sqrt{x-1}} = \frac{1}{2x\sqrt{x-1}}$. **1b** Simplify $7 \log_5 (e^{2x}) = \frac{7 \ln(e^{2x})}{1.7}$ $7 \log_5 \left(e^{2x} \right) = \frac{7 \ln \left(e^{2x} \right)}{\ln 5} = \frac{7 \cdot 2x}{\ln 5} = \frac{14}{\ln 5} x$, so $\frac{dy}{dx} = \frac{14}{\ln 5}$. **1c** Apply the chain rule to $(a\,ob)(x)$, letting $a(x) = x^4$ and $b(x) = \sin^{-1} x$. Then $a'(x) = 4x^3$ and $b'(x) = \frac{1}{\sqrt{1-x^2}}$. $'(\textit{x}) = \frac{1}{\sqrt{1-x}}$

Therefore
$$
\frac{d}{dx}(a \, \text{ob})(x) = 4\left(\sin^{-1} x\right)^3 \cdot \frac{1}{\sqrt{1-x^2}} = \frac{4\left(\sin^{-1} x\right)^3}{\sqrt{1-x^2}}
$$
.

1d Simplify $7^{-2 \log_7 t} = (7^{\log_7 t})^{-2} = t^{-2}$, meaning $q = \sec^2(t^{-2})$. Then applying the Chain Rule gives $\frac{dq}{dt} = 2\sec(t^{-2})\sec(t^{-2})\tan(t^{-2})(-2t^{-3}) = \frac{-4\sec^2(t^{-2})\tan(t^{-2})}{t^3}.$ *t* $=\frac{-4\sec^2\left(t^{-2}\right)\tan\left(t^{-2}\right)}{2}$

 $f^{(a)}(x)$ 1 1 **1e** Differentiating term by term with the Chain Rule applied to the third term and $\int_{c}^{c} f(x) dx$ noting that the fourth and fifth terms are simply constants gives $\frac{dz}{dx} = -\frac{6}{x^4} + \frac{1}{x^2} + 3x^2 \ln 5 \cdot 5^{x^3}$.

x 2 $\frac{1}{x^2}$ 1 *x* − 2 **2** Consider the table at right. You're out of luck if you don't see the pattern, but it's $\frac{-1}{2}$ not too difficult: $f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{n}$. *n* $f^{(n)}(x) = \frac{(-1)^{n+1}(n)}{x^n}$ *x* $=\frac{(-1)^{n+1}(n-1)}{n}$

6

24 *x*

3 $\frac{2}{3}$ *x* 4 $\frac{1}{\sqrt{4}}$ *x* − **3a** By a combination of inspection and application of the Power Rule for Antideriva- $\frac{3}{x^3}$ $\frac{2}{x^3}$ tives, $(x) = -\frac{1}{2x^2} - \ln|x| + 3^x + 2^x x + (\ln 8) x + C.$ 2 $F(x) = -\frac{1}{2a^{2}} - \ln|x| + 3^{x} + 2^{c}x + (\ln 8)x + C$ *x* $=-\frac{1}{x}-\ln|x|+3^x+2^x+(1n8)x+$

3b This involves reversing the Chain Rule; the 2x is the result of an x^2 term. 5 $\frac{24}{\sqrt{5}}$ $F(x) = \ln (9 + x^2) + C.$

3c This, too, involves reversing the Chain Rule. The function is equal to $\left(\frac{x}{3}\right)^2$ $\frac{1}{\sqrt{2}}$ $3\sqrt{1-(\frac{x}{3})}$ meaning that

 $F(x) = \sin^{-1}\left(\frac{x}{3}\right) + C.$

- **3d** This is pretty ugly, but you're helped by the fact that a function and a bunch of its derivatives appear in the original function. It's admittedly tricky to see that $F(x)$ = 4 $\mathrm{tan}^{-1} (x^3)$ + C.
- **4** The equation of the tangent line means that the point $(x, y) = (1, -2)$ is on the graph and that $f'(1) = 2\ln 2$. Antidifferentiating $f''(x)$ gives $f'(x) = (\ln 2)2^x + \frac{1}{x} + C$; knowing that $f'(1) = 2\ln 2$ means that we can solve $2 \ln 2 = (\ln 2) 2^{1} + \frac{1}{1}$ 1 $f'(x) = (\ln 2)2^{x} + \frac{1}{x} + C \Rightarrow C = -1$, and therefore $f'(x) = (\ln 2)2^{x} + \frac{1}{x} - 1$. Antidifferentiating that gives $f(x)=2^{x} + \ln|x| - x + C$, and since $f(1) = -2$, we know that $f(x)=2^{x} + \ln|x| - x - 3$.
- **5a** This limit is an indeterminate form of type $\frac{0}{0}$. Differentiating the top and bottom (separately) gives $\lim_{x\to 0} \frac{2\sin x \cos x}{-3\sin 3x},$ $\lim_{x\to 0}$ -3sin3 *x x* $\rightarrow 0$ −3sin 3x which is itself an indeterminate form, also of type $\frac{0}{0}$. Therefore we must again apply l'Hôpital's Rule to get 2 \approx 1.2 \approx 2 $\lim_{x\to 0} \frac{-2\sin^2 x + 2\cos^2 x}{-9\cos 3x}.$ $x\rightarrow 0$ $-9\cos 3$ $x + 2\cos^2 x$ \rightarrow ⁰ $-9\cos 3x$ $\frac{-2\sin^2 x + 2\cos^2 x}{-9\cos 3x}$. Now we can plug in $x = 0$ to get $-\frac{2}{9}$.
- **5b** This is also an indeterminate form of type $\frac{0}{0}$. Applying l'Hôpital's Rule gives 2 $\lim_{x\to 0} \frac{-2x + 2xe^{-x}}{4x^3},$ 4 *x x* $x + 2xe$ *x* − $\lim_{x\to 0} \frac{-2x + 2xe^{-x^2}}{4x^3}$, from which we can factor out and cancel an *x* to get 2 $\lim_{x\to 0} \frac{-2 + 2e^{-x}}{4x^2}.$ 4 *x x e x* − $\lim_{x\to 0} \frac{-2 + 2e^{-x^2}}{4x^2}$. This is also an indeterminate form of type $\frac{0}{0}$, $\frac{0}{0}$, so we apply l'Hôpital's Rule once again to get 2 $\lim_{x\to 0} \frac{-4xe^{-x}}{8x}.$ 8 *x x xe x* − $\lim_{x\to 0} \frac{-4xe^{-x^2}}{8x}$. An *x* cancels, so the limit is $\lim_{x\to 0} \frac{-4e^{-x^2}}{8}$ $\lim_{x\to 0}\frac{-4e^{-x}}{8},$ 8 *x x e* − $\lim_{x\to 0} \frac{-4e^{-x^2}}{8}$, into which we can plug $x = 0$ to get $-\frac{1}{2}$.
- 5c This indeterminate form is of type 1[∞], so we cannot directly apply l'Hôpital's Rule. Therefore we rewrite it as $\lim_{x\to 0} \ln(1-3x)^{2/x} = \lim_{\sigma x\to 0} \frac{2\ln(1-3x)}{x}$ $\sum_{x=0}^{x} e^{\lim_{x\to 0} \frac{2 \ln(1-5x)}{x}}$. $e^{x\to 0}$ $e^{x\to 0}$ $e^{x\to 0}$ $e^{x\to 0}$ $\frac{\lim_{x\to 0} \ln(1-3x)}{x}$. The limit in the exponent is an indeterminate form of type $\frac{0}{0}$, and applying l'Hôpital's Rule gives $e^{\lim_{x\to 0} \frac{2(-3)}{1-3x}} = e^{\lim_{x\to 0} \frac{-6}{1-3x}}.$ $\frac{\sin^{\frac{2(-3)}{1-3x}}}{1}$ = $e^{\lim\frac{-6}{1-3x}}$. We can now plug in *x* = 0 to get e^{-6} .
- **6** Let *x* be the *x*-coordinate of the rectangle's vertices in the first quadrant; therefore, −*x* is the *x*-coordinate of the rectangle's vertices in the second quadrant. The rectangle's area is $A=2xe^{-x^2}$, so $\frac{dA}{dx}=2e^{-x^2}\big(1-2x^2\big).$ We wish to maximize this, so we set $2e^{-x^2}(1-2x^2)=0$. Then the Zero Product Property implies $2e^{-x^2}=0$ and/or $1 - 2x^2 = 0$, but the former will never be true. Therefore $2x^2 = 1 \Rightarrow x = \frac{1}{\sqrt{2}}$. 2 $x^2 = 1 \Rightarrow x = \frac{1}{\sqrt{2}}$. Given that, $A\left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{2}{e}}$. We do, however, need to verify that this is a relative maximum. Thus we find $\frac{d^2A}{dx^2} = 2e^{-x^2} \left(-4x \right) + \left(1 - 2x^2 \right) \left(-4xe^{-x^2} \right)$ $= -4xe^{-x^2}(3-2x^2)$. Plugging in $x = \frac{1}{\sqrt{2}}$ gives $\frac{d^2A}{dx^2}\Big|_{x=\frac{1}{\sqrt{2}}} = -4\Big(\frac{1}{\sqrt{2}}\Big)e^{-1/2}(3-2\Big(\frac{1}{2}\Big))$ $\frac{d^2A}{dx^2}\Big|_{x=\frac{1}{\sqrt{2}}} = -4\Big(\frac{1}{\sqrt{2}}\Big)e^{-1/2}\left(3-2\Big(\frac{1}{2}\Big)\right) = -\frac{4}{\sqrt{2}}e^{-1/2}\cdot 2.$ This is negative, so the point is indeed a relative maximum.

7
$$
f'(x) = \frac{1}{x + 4 + e^{-3x}} (1 - 3e^{-3x})
$$
, so plugging in $x = 0$ gives $f'(0) = \frac{1}{5}(1 - 3) = -\frac{2}{5}$, choice a.

8 Consider $f = 3^g$, $g = 5^b$, and $h = x^2$. Then $y = f(g(h(x)))$. $\frac{df}{dg} = 3^g \ln 3 = 3^{5^b} \ln 3 = 3^{5^{x^2}} \ln 3$, $\frac{dg}{dh} = 5^b \ln 5 = 5^{x^2} \ln 5$, and $\frac{dh}{dx} = 2x$. Since $\frac{dy}{dx} = \frac{df}{dg} \frac{dg}{dh} \frac{dh}{dx}$ by the Chain Rule, $\frac{dy}{dx} = 3^{5^{x^2}} \ln 3 \cdot 5^{x^2} \ln 5 \cdot 2x$, which rearranges to choice **d**.

9 Clearly $f'(x) = 3x^2 + 1$ and $f'(1) = 4$, and Theorem 7 from section 7.1 (page 418) gives $g'(a) = \frac{1}{f'(g(a))}$ for this situation where $a = 2$. Given that $g(2)=1$, we know $g'(2) = \frac{1}{f'(1)} = \frac{1}{4}$, choice **b**.

θ $x^2 + 9$ 3 **10** Consider the diagram at right, in which $\theta = \cot^{-1} \frac{x}{2}$. 3 $\theta = \cot^{-1} \frac{x}{2}$. In the diagram, sec $\theta = \frac{\sqrt{x^2 + 9}}{2}$, *x* $\theta = \frac{\sqrt{x^2 + 1}}{2}$ choice **d**.

x

- **11** The function can be rewritten as $f(x) = e^{x \ln(\ln x)}$, and judicious application of the Chain and Product Rules gives $(x) = (\ln x)^{x} \left(\ln(\ln x) + \frac{1}{1} \right).$ ln $f'(x) = (\ln x)^{x} \ln(\ln x)$ $f(x) = (\ln x)^{x} \left(\ln(\ln x) + \frac{1}{\ln x} \right)$
- **12** Since $\lim_{x \to 0^+} \ln x = -\infty$, and $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$, the limit is $-\frac{\pi}{2}$, choice **e**.