AP Calculus BC Review — Inverse Functions (Chapter 7)

Things to Know and Be Able to Do

- How to find an inverse function's derivative at a particular point (page 418)
- > The following derivatives (including, for the inverse trigonometric ones, how to derive them):
 - $\circ \quad \frac{d}{dx}(b^x) = b^x \ln b \text{ for } b > 0$
 - special case: $\frac{d}{dx}(e^x) = e^x$

$$\circ \quad \frac{d}{dx} \left(\log_b |x| \right) = \frac{1}{x \ln b} \text{ for } b > 0 \text{ and } b \neq 1$$

• special case: $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$

$$\circ \quad \frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}} \qquad \circ \quad \frac{d}{dx} \left(\csc^{-1} x \right) = -\frac{1}{x\sqrt{x^2 - 1}} \\ \circ \quad \frac{d}{dx} \left(\cos^{-1} x \right) = -\frac{1}{\sqrt{1 - x^2}} \qquad \circ \quad \frac{d}{dx} \left(\sec^{-1} x \right) = \frac{1}{x\sqrt{x^2 - 1}} \\ \circ \quad \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2} \qquad \circ \quad \frac{d}{dx} \left(\cot^{-1} x \right) = -\frac{1}{1 + x^2}$$

- > The following antiderivatives and the all-new notation for them:
 - $\int b^{x} dx = \frac{b^{x}}{\ln b} + C \text{ for } b > 0$ $\text{ special case: } \int e^{x} dx = e^{x} + C$ $\int \frac{dx}{\sqrt{1 x^{2}}} = \sin^{-1} x + C$ $\int -\frac{dx}{\sqrt{1 x^{2}}} = \cos^{-1} x + C$ $\int \frac{dx}{\sqrt{1 x^{2}}} = \cos^{-1} x + C$ $\int \frac{dx}{\sqrt{1 x^{2}}} = \cos^{-1} x + C$ $\int \frac{dx}{\sqrt{1 x^{2}}} = \tan^{-1} x + C$ $\int \frac{dx}{\sqrt{1 x^{2}}} = \tan^{-1} x + C$
- > The shapes of the graphs of $y = \sin^{-1} x$, $y = \cos^{-1} x$, and $y = \tan^{-1} x$ along with each function's domain and range
- > l'Hôpital's Rule and when it applies, including how to convert indeterminate forms of types $0 \cdot \infty$, $\infty \infty$, 0^0 , ∞^0 , and 1^∞ into forms to which l'Hôpital's Rule applies

Practice Problems

All questions should be completed without the use of a calculator.

1 Find $\frac{dy}{dx}$ or the other specified derivative for each function given.

a
$$y = \tan^{-1}\sqrt{x-1}$$

b $y = 7\log_5(e^{2x})$
c $y = (\sin^{-1}x)^4$
d Given $q = \sec^2(7^{-2\log_7 t})$, find $\frac{dq}{dt}$
e Given $z = \frac{2}{x^3} - \frac{1}{x} + 5^{x^3} + 2^e + \ln 8$, find $\frac{dz}{dx}$

2 Find a rule for $f^{(n)}(x)$ if $f(x) = \ln(2x)$.

3 Find a general antiderivative for each function given.

a
$$f(x) = \frac{1}{x^3} - \frac{1}{x} + \ln(3)3^x + 2^e + \ln 8$$

b $f(x) = \frac{2x}{9 + x^2}$
c $f(x) = \frac{1}{\sqrt{9 - x^2}}$
d $f(x) = \frac{3x^2 \ln 4 \cdot 4^{\tan^{-1}x^3}}{1 + x^6}$

4 Determine the function f(x) if $f''(x) = (\ln 2)^2 2^x - \frac{1}{x^2}$ and the equation of the tangent line to the graph of f at x = 1 is $y + 2 = (2\ln 2)(x - 1)$. Show your work.

 $c_{\frac{1}{4}}$

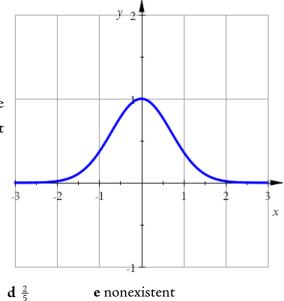
5 Evaluate each limit or show that it does not exist. Show your work.

a
$$\lim_{x \to 0} \frac{\sin^2 x}{\cos(3x) - 1}$$

b
$$\lim_{x \to 0} \frac{1 - x^2 - e^{-x^2}}{x^4}$$

c
$$\lim_{x \to 0} (1 - 3x)^{2/x}$$

6 A rectangle has its base on the *x*-axis and two vertices on the curve $y = e^{-x^2}$, the graph of which is shown at right. Find the largest possible area for the rectangle. Justify your answer.



7 If
$$f(x) = \ln(x+4+e^{-3x})$$
, then $f'(0) = a - \frac{2}{5}$ b $\frac{1}{5}$

8 Find the derivative of $y = 3^{5^{x^2}}$ with respect to *x*.

a $2x \ln 15 \cdot 15^{x^2}$ c $2x \ln 3 \cdot 5^{x^2} 3^{5^{x^2}}$ b $2x \ln 3 \cdot 3^{5^{x^2}}$ d $2x \ln 5 \cdot \ln 3 \cdot 5^{x^2} 3^{5^{x^2}}$

9 Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, find g'(2). **a** $\frac{1}{13}$ **b** $\frac{1}{4}$ **c** $\frac{7}{4}$ **d** 4 **e** 13

10 Which of the following is equivalent to $\sec\left(\cot^{-1}\frac{x}{3}\right)$?

a
$$\frac{3}{\sqrt{x^2+9}}$$
 b $\frac{x}{\sqrt{9-x^2}}$ **c** $\frac{\sqrt{x^2+9}}{3}$ **d** $\frac{\sqrt{x^2+9}}{x}$ **e** $\frac{\sqrt{9-x^2}}{x}$

11 Which of the following is the derivative of $f(x) = (\ln x)^x$ with respect to *x*?

a
$$x(\ln x)^{x-1}$$

b $(\ln x)^{x-1}$
c $(\ln x)^x \ln(\ln x)$
e $\frac{x(\ln x)^{x+1}}{x+1}$
d $(\ln x)^x \left(\ln(\ln x) + \frac{1}{\ln x}\right)$

12 Find $\lim_{x\to 0^+} \arctan(\ln x)$

a 1 b
$$\infty$$
 c $\frac{\pi}{4}$ d $-\frac{\pi}{4}$ e $-\frac{\pi}{2}$

Answers

$$1a \frac{dy}{dx} = \frac{1}{2x\sqrt{x-1}}$$

$$3a F(x) = -\frac{1}{2x^{2}} - \ln|x| + 3^{x} + 2^{e}x + (\ln 8)x + C$$

$$1b \frac{dy}{dx} = \frac{14}{\ln 5}$$

$$3b F(x) = \ln(9 + x^{2}) + C$$

$$3c F(x) = \sin^{-1}\frac{x}{3} + C$$

$$3c F(x) = \sin^{-1}\frac{x}{3} + C$$

$$3d F(x) = 4^{\tan^{-1}(x^{3})} + C$$

$$4f(x) = 2^{x} + \ln|x| - x - 3$$

$$5a -\frac{2}{9} - 5b - \frac{1}{2} - 5c e^{-6}$$

$$1e \frac{dx}{dx} = -\frac{6}{x^{4}} + \frac{1}{x^{2}} + 3x^{2} \ln 5 \cdot 5^{x^{3}}$$

$$2 f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{x^{n}}$$

$$7a 8 d 9 b 10 d 11 d 12 e$$

Solutions

1a Apply the Chain Rule to $(a \circ b)(x)$, letting $a(x) = \tan^{-1} x$ and $b(x) = \sqrt{x-1}$. Then $a'(x) = \frac{1}{x^2+1}$ and $b'(x) = \frac{1}{2\sqrt{x-1}}$, so $\frac{d}{dx}(a \circ b)(x) = \frac{1}{\sqrt{x-1}^2 + 1} \cdot \frac{1}{2\sqrt{x-1}} = \frac{1}{2x\sqrt{x-1}}$. **1b** Simplify $7\log_5(e^{2x}) = \frac{7\ln(e^{2x})}{\ln 5} = \frac{7\cdot 2x}{\ln 5} = \frac{14}{\ln 5}x$, so $\frac{dy}{dx} = \frac{14}{\ln 5}$. 1c Apply the chain rule to $(a \circ b)(x)$, letting $a(x) = x^4$ and $b(x) = \sin^{-1} x$. Then $a'(x) = 4x^3$ and $b'(x) = \frac{1}{\sqrt{1-x^2}}$.

Therefore
$$\frac{d}{dx}(a \, ob)(x) = 4(\sin^{-1}x)^3 \cdot \frac{1}{\sqrt{1-x^2}} = \frac{4(\sin^{-1}x)^3}{\sqrt{1-x^2}}$$

1d Simplify $7^{-2\log_7 t} = (7^{\log_7 t})^{-2} = t^{-2}$, meaning $q = \sec^2(t^{-2})$. Then applying the Chain Rule gives $\frac{dq}{dt} = 2 \sec(t^{-2}) \sec(t^{-2}) \tan(t^{-2}) (-2t^{-3}) = \frac{-4 \sec^2(t^{-2}) \tan(t^{-2})}{t^{-3}}.$

- 1e Differentiating term by term with the Chain Rule applied to the third term and noting that $f^{(a)}(x)$ the fourth and fifth terms are simply constants gives $\frac{dz}{dx} = -\frac{6}{x^4} + \frac{1}{x^2} + 3x^2 \ln 5 \cdot 5^{x^3}$. 1
- 2 Consider the table at right. You're out of luck if you don't see the pattern, but it's not too 2 difficult: $f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{x^n}$.

tives,

 $\frac{\frac{1}{x}}{\frac{-1}{x^2}}$ $\frac{\frac{2}{x^3}}{\frac{-6}{x^4}}$ 3 3a By a combination of inspection and application of the Power Rule for Antideriva- $F(x) = -\frac{1}{2x^2} - \ln|x| + 3^x + 2^e x + (\ln 8)x + C.$ 4

3b This involves reversing the Chain Rule; the 2x is the result of an x^2 term. 5 $F(x) = \ln(9+x^2) + C.$

3c This, too, involves reversing the Chain Rule. The function is equal to $\frac{1}{3\sqrt{1-\left(\frac{x}{3}\right)^2}}$, meaning that

 $F(x) = \sin^{-1}\left(\frac{x}{3}\right) + C.$

- 3d This is pretty ugly, but you're helped by the fact that a function and a bunch of its derivatives appear in the original function. It's admittedly tricky to see that $F(x) = 4^{\tan^{-1}(x^3)} + C$.
- 4 The equation of the tangent line means that the point (x,y)=(1,-2) is on the graph and that $f'(1)=2\ln 2$. Antidifferentiating f''(x) gives $f'(x)=(\ln 2)2^x + \frac{1}{x} + C$; knowing that $f'(1)=2\ln 2$ means that we can solve $2\ln 2 = (\ln 2)2^1 + \frac{1}{1} + C \Rightarrow C = -1$, and therefore $f'(x)=(\ln 2)2^x + \frac{1}{x} - 1$. Antidifferentiating that gives $f(x)=2^x + \ln|x|-x+C$, and since f(1)=-2, we know that $f(x)=2^x + \ln|x|-x-3$.
- 5a This limit is an indeterminate form of type $\frac{0}{0}$. Differentiating the top and bottom (separately) gives $\lim_{x\to 0} \frac{2\sin x \cos x}{-3\sin 3x}$, which is itself an indeterminate form, also of type $\frac{0}{0}$. Therefore we must again apply l'Hôpital's Rule to get $\lim_{x\to 0} \frac{-2\sin^2 x + 2\cos^2 x}{-9\cos 3x}$. Now we can plug in x = 0 to get $-\frac{2}{9}$.
- **5b** This is also an indeterminate form of type $\frac{0}{0}$. Applying l'Hôpital's Rule gives $\lim_{x\to 0} \frac{-2x + 2xe^{-x^2}}{4x^3}$, from which we can factor out and cancel an x to get $\lim_{x\to 0} \frac{-2 + 2e^{-x^2}}{4x^2}$. This is also an indeterminate form of type $\frac{0}{0}$, so we apply l'Hôpital's Rule once again to get $\lim_{x\to 0} \frac{-4xe^{-x^2}}{8x}$. An x cancels, so the limit is $\lim_{x\to 0} \frac{-4e^{-x^2}}{8}$, into which we can plug x = 0 to get $-\frac{1}{2}$.
- 5c This indeterminate form is of type 1^{∞} , so we cannot directly apply l'Hôpital's Rule. Therefore we rewrite it as $e^{\lim_{x\to 0} \ln(1-3x)^{2/x}} = e^{\lim_{x\to 0} \frac{2\ln(1-3x)}{x}}$. The limit in the exponent is an indeterminate form of type $\frac{0}{0}$, and applying l'Hôpital's Rule gives $e^{\lim_{x\to 0} \frac{2(-3)}{1}} = e^{\lim_{x\to 0} \frac{-6}{1-3x}}$. We can now plug in x = 0 to get e^{-6} .
- 6 Let x be the x-coordinate of the rectangle's vertices in the first quadrant; therefore, -x is the x-coordinate of the rectangle's vertices in the second quadrant. The rectangle's area is $A = 2xe^{-x^2}$, so $\frac{dA}{dx} = 2e^{-x^2}(1-2x^2)$. We wish to maximize this, so we set $2e^{-x^2}(1-2x^2)=0$. Then the Zero Product Property implies $2e^{-x^2}=0$ and/or $1-2x^2=0$, but the former will never be true. Therefore $2x^2=1 \Rightarrow x = \frac{1}{\sqrt{2}}$. Given that, $A(\frac{1}{\sqrt{2}}) = \sqrt{\frac{2}{e}}$. We do, however, need to verify that this is a relative maximum. Thus we find $\frac{d^2A}{dx^2} = 2e^{-x^2}(-4x) + (1-2x^2)(-4xe^{-x^2}) = -4xe^{-x^2}(3-2x^2)$. Plugging in $x = \frac{1}{\sqrt{2}}$ gives $\frac{d^2A}{dx^2}\Big|_{x=\frac{1}{\sqrt{2}}} = -4(\frac{1}{\sqrt{2}})e^{-1/2}(3-2(\frac{1}{2})) = -\frac{4}{\sqrt{2}}e^{-1/2} \cdot 2$. This is negative, so the point is indeed a relative maximum.

7
$$f'(x) = \frac{1}{x+4+e^{-3x}} (1-3e^{-3x})$$
, so plugging in $x=0$ gives $f'(0) = \frac{1}{5} (1-3) = -\frac{2}{5}$, choice **a**.

8 Consider $f = 3^g$, $g = 5^h$, and $h = x^2$. Then y = f(g(h(x))). $\frac{df}{dg} = 3^g \ln 3 = 3^{5^h} \ln 3 = 3^{5^{x^2}} \ln 3$, $\frac{dg}{dh} = 5^h \ln 5 = 5^{x^2} \ln 5$, and $\frac{dh}{dx} = 2x$. Since $\frac{dy}{dx} = \frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx}$ by the Chain Rule, $\frac{dy}{dx} = 3^{5^{x^2}} \ln 3 \cdot 5^{x^2} \ln 5 \cdot 2x$, which rearranges to choice **d**.

9 Clearly $f'(x) = 3x^2 + 1$ and f'(1) = 4, and Theorem 7 from section 7.1 (page 418) gives $g'(a) = \frac{1}{f'(g(a))}$ for this situation where a = 2. Given that g(2) = 1, we know $g'(2) = \frac{1}{f'(1)} = \frac{1}{4}$, choice **b**.

10 Consider the diagram at right, in which $\theta = \cot^{-1} \frac{x}{3}$. In the diagram, $\sec \theta = \frac{\sqrt{x^2 + 9}}{x}$, $\sqrt{x^2 + 9}$ choice **d**.

- 11 The function can be rewritten as $f(x) = e^{x \ln(\ln x)}$, and judicious application of the Chain and Product Rules gives $f'(x) = (\ln x)^x \left(\ln(\ln x) + \frac{1}{\ln x} \right).$
- 12 Since $\lim_{x\to 0^+} \ln x = -\infty$, and $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$, the limit is $-\frac{\pi}{2}$, choice **e**.