
Multivariable Calculus 
Review Problems — Calculus BC Review and Hyperbolic Functions 
 
Things to Know and Be Able to Do 

 Understand hyperbolic trigonometric functions from definitions in terms of exponential functions and identi-
ties that relate them to each other, and notice parallels and differences between hyperbolic and circular trigo-
nometric functions 

 Prove the existence and value of limits of functions of one variable where they exist 
 Recall concepts about integrals and derivatives from Calculus BC and these concepts’ applications 
 Use parametric equations to define and analyze curves in two dimensions 
 Understand and use the two Theorems of Pappus that deal with solids of revolution 
 Find the moments about axes and the center of mass of planar laminas of uniform density and of density given 

by a function of one variable, and of systems of particles 
 

Practice Problems 
These problems may be done with a calculator except where noted otherwise. The original test, of course, required that you 
show relevant work. 

1a Show without the use of a calculator that 2

cosh
csch

cosh 1
x

dx x C
x

= − +
−∫  for some constant C. 

1b Use the result from part a to evaluate 
ln5

2ln2

cosh
cosh 1

x
dx

x −∫  without the use of a calculator. 

 

2 A system has three masses located at ( )1,5 ,  ( )3, 2 ,−  and ( )2, 1 .− −  Their masses are 6, 5, and 10, respectively. Find 
the moments xM  and yM  about the x- and y-axes respectively, and find the center of mass of the system. 
 
3 Find the y-coordinate of the center of mass of the region bounded by the curves 2 5x y= −  and 4 ,x y=  if the lam-
ina’s density is given by the function 3.yδ = +  Your solution should include a sketch of the region as well as the cal-
culations needed to produce your answer; you may use your calculator to evaluate integrals. 
 

4 Prove using the delta-epsilon definition of a limit that 
2

4
lim 4.

3x x→
= −

−
 Write your proof in the correct order and in-

clude a statement of the definition of a limit. 
 

5 Let R be the region defined by 2 22 2 12 20 4 0.x y x y+ + − − ≤  Use the Theorem of Pappus to find the volume of the 
solid formed when R is revolved about the line 6.x =  (No calculus is necessary.) 
 
6 Consider the half of the hyperbola 2 2 1x y− =  for which y is nonnegative. Write parametric equations for this curve 

using t as the parameter, where t is the slope of the line tangent to the hyperbola at the point ( ), .x y  
 
7 Use the distance formula in polar coordinates to find a polar equation for the set P of all points that are twice as far 
from ( )0,6  as from ( )0,3  in the Cartesian plane. 
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7 4sinr θ=  
 
 
Solutions 

1a Recall the identity 2 2cosh sinh 1;x x− =  therefore 2 2cosh 1 sinh .x x− =  The integral is therefore 2

cosh
,

sinh
x dx
x∫  

which we can evaluate using u-substitution with sinh .u x=  Then coshdu x dx=  and the integral is 2

du
u∫  

1 1
csch .

sinh
C C x C

u x
= − + = − + = − +  

1b ]
ln5 ln5

ln22ln2

cosh
csch .

cosh 1
x dx x

x
= −

−∫  Now it is convenient to return to the exponential definitions of the hyperbolic 

trigonometric functions; in this case, recall that 
( )1
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 so we are interested in 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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4 5 11
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3 12 12
= − =  

2 The diagram at right may make things more convenient.  The system has total 
mass 6 5 10 21.m = + + =  The moment about the x-axis, ,xM  is given by taking 
the product of each particle’s mass with its distance from the x-axis (note that 
this is the y-coordinate of each!) and adding this up for each particle. Therefore 

( ) ( ) ( )6 5 5 2 10 1 10.xM = + − + − =  Similarly, we use the x-coordinate in finding 

yM  because this represents particles’ distances from the y-axis; 

( ) ( ) ( )6 1 5 3 10 2 1.yM = + + − =  The center of mass has coordinates ( ),x y  

1 10
, , .

21 21
y x

M M
m m

⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
3 Again, a diagram is provided. The lamina’s total mass is 

( )m y dAδ= ∫  ( ) ( )( )5 2

1
3 4 5 180.y y y dy

−
= + − − =∫   Remem-

ber that the second factor comes from the width of a small sec-
tion and the dy represents an infinitesimal thickness, so their 
product gives a small area. To find the y-coordinate of the cen-
ter of mass, ,y  we must find the lamina’s moment about the x-axis, .xM  This requires the same integral but with 

an additional factor of y to include the distance from the x-axis: ( ) ( )( )5 2

1

2124
3 4 5 .

5xM y y y y dy
−

= + − − =∫  

Then 
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4 We wish to prove that 
4

0 0 : 2 4 .
3

x
x

ε δ δ ε∀ > ∃ > − < ⇒ + <
−

 (If you don’t remember what all the symbols 

mean, fix that.)  We start from the end in order to find ( ) .fδ ε=   
4

4 ,
3x

ε+ <
−

 then we combine the two parts 

within the absolute value signs: 
( ) ( )4 3 4 24 4 4 12

.
3 3 3 3

x xx
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ε
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+ = = <
− − − −

 The 2x −  factor is desirable 

because we will be starting from a statement involving it, but we need to eliminate a factor of 
1

.
3x −

 Thus we re-

strict .δ  A common first instinct is to try letting 1,δ <  which produces 1 2 1.x− < − <  We want a factor of 
3,x −  so 2 3 0,x− < − <  but since we want to take the reciprocal of both sides, this doesn’t work because we 

would have to involve 1 0.  Instead, we take (the arbitrarily chosen) 2.δ <  Now 2 2 2,x− < − <  or 
3 3 1.x− < − <  Taking reciprocals and remembering to switch the direction of the comparison operators, 
1 1

1.
3 3x

− > >
−

  Knowing that 
1 1

3 3x
< −

−
 allows us to state ( )( ) ( )1

3

4 2
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 so ( )4
3 2 .x ε− <  

Therefore  3
42 .x ε− <  Now we can begin with the actual proof. 

Begin by stating that 0ε∀ >  we will let { }3
4min 2, .δ ε=  Therefore 2x δ− <  has two possibilities: first, 2 2,x − <  

or 2 2 2,x− < − <  which gives 3 3 1.x− < − <  Again taking reciprocals and flipping operators, 
1 1

1,
3 3x

− > >
−

 so 

we know that 
1 1

.
3 3x
< −

−
 Let’s just set this aside for a moment and continue with the other possibility, 

3
42 .x ε− <  This means that ( )4

3 2 ,x ε− <  or ( )( )1
3 4 2 .x ε− <  We have the discretion to put in a negative sign 

within the absolute value signs: ( )( )1
3 4 2 .x ε− − <  Using what we just “discovered”, we can replace the 1 3−  

with 
1

3x −
 because ( )( ) ( )( )1

3

1
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 which is what 

we wanted. We have just shown that 
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 which is equivalent by defini-

tion to the statement 
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5 Recall that the [relevant part of the] Theorem of Pappus states that the volume of a solid of revolution generated by 

revolving a planar region about an external axis is the product of the area of the region with the distance its cen-
troid travels in revolution. First, it is important to determine what exactly the region is. Begin by rewriting the re-
gion’s defining inequality as 2 26 10 2x x y y+ + − ≤  and then complete the square for x and y: 

2 26 9 10 25x x y y+ + + − +  2 9 25,≤ + +  or ( ) ( )223 5 36.x y+ + − ≤  This, then, is a circle with radius 6 centered 

at ( )3,5 .− The region’s centroid is simply the circle’s center, from which the distance to the line 6x =  is 9.  The 
centroid will travel a distance of 2π  times its distance from the axis, or 18π,  and the region’s area is clearly 

2 2π 6 π 36π.r = =  Therefore the volume of the solid is ( ) 218π 36π 648π .=  
 

6 We differentiate the given equation implicitly with respect to x, giving 2 2 0
dy

x y
dx

− =  and solve for 
dy
dx

 to get 

.
dy x
dx y

=  The problem states that the parameter t is to be assigned to ,
dy
dx

 so we know .
x

t
y

=  It then remains to 



solve for x and y in terms of t only. We square the just-found equation to get 
2

2
2 ,

x
t

y
=  and use the original defini-

tion of the curve to substitute 2 21 .x y= +  Now 
2
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=  so ( )2 2 1 1y t − =  and 2
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 giving 
2

1
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Changing the substitution to be instead 2 2 1,y x= −  we also can find 
2

2
2 ,

1
x

t
x

=
−

 so ( )2 2 21x t t− =  and 

2
2

2 .
1

t
x
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=

−
 This gives 

2
,
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t
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=

−
 so the parametric equations are 
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=
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7 The formula for the distance d in polar coordinates between two points given by ( )1 1,r θ  and ( )2 2,r θ  is 

( )2 2
1 2 1 2 2 12 cos .d r r r r θ θ= + − − You can derive this from the Law of Cosines if you have forgotten it, but it 

would be more advisable to memorize it. Realize that we are concerned with three points: an arbitrary ( ), ,r θ  and 

the two given points. These are, in polar coordinates, ( )6,π 2  and ( )3,π 2  respectively. Therefore according to 

the problem, we want to find all ( ),r θ  such that ( ) ( ) ( ) ( )2 2 2 22 3 2 3 cos π 2 6 2 6 cos π 2 .r r r rθ θ+ − − = + − −  

It is convenient to square both sides, giving ( )( ) ( )2 24 9 6 cos π 2 36 12 cos π 2 ,r r r rθ θ+ − − = + − −  which is 

more nicely written as 2 24 36 24 sin 36 12 sin ,r r r rθ θ+ − = + −  or even better as 23 12 sin .r r θ=  This can be re-
written one more time, in standard ( )r f θ=  form, as 4sin .r θ=   


