Current & Ohm's Law

"But what...is it good for?"-- Engineer at the Advanced Computing Systems Division of IBM commenting on the microchip, 1968.

president, chairman and founder of Digital "There is no reason anyone would want a computer in their home." Ken Olson, Equipment Corp., 1977

Current

When charge flows a <u>current</u>

_exists.

Current is the Care through a cross-sectional area. at which charge flows 74

• I = dQ/dt (units are $\leq - a \rho s A$)

- 4-7 7-5 1-8
- Conventional current is the direction of positive charge flow.
- The moving charge (normally an electron) are often referred to a mobile charge carriers.

Model/Drift Velocity/Ohm

- Draw a diagram of an e-moving in a wire.

 E = 31574

 Collisions with atms
- drift velocities are typically very low $\approx 2 \times 10^{-4}$ m/s.
- The E-field inside a conductor is _____ when charge
- Current density, J= I/A is stationary e e e e e e guiddy
- A current density and an E-field are established in a conductor whenever a potantial difference maintained across the conductor.
- For some materials the current density is directly proportional to the E-field. E OCH AV- voltage(V)
- These material obey Ohm's Law $\Delta V = IR$

3-resistance

(ohns, Jz)

Jhm's Law

- 0 conductivity (how well does this metail conduct)
- Resistivity, $\rho \equiv 1/\sigma$

- Table on page 847 has resistivity for materials Dook K
- Graph ΔV vs. I for *ohmic* and *nonohmic* materials.

Resistance & Temperature

Over a limited temperature range the resistivity of a metals varies with the temperature as

$$\rho = \rho_o(1 + \alpha(T - T_o))$$

X- Now does

change with temperature

 T_0 is usually taken to be 2°

α is the temperature coefficient of resistivity

$$\alpha = \Delta \rho / (\rho_o \Delta T)$$

- Table 27.1 on page 847 has α
- Because resistance is proportional to resistivity the expression for resistance is

$$R = R_o(1 + \alpha(T - T_o))$$

Power

- Because charge can not build up the current is the egual everywhere in the circuit.
- The rate ΔQ loses potential energy while going through the resistor is DV= DV

$$\frac{\Delta U}{\Delta t} = \frac{\Delta Q}{\Delta t} \Delta V = I \Delta V$$

The power delivered to the resistor is

 Joule heating is the power lost as internal energy in a conductor. (I^2R loss)

- Examples

 Onsider a Nichrome wire, which has a radius of 0.321が=オーリルの公
- Calculate the resistance per length of the wire.
- A 10 V potential difference is maintained across 1 m of the wire, what is the current? $\Delta V = IR$ $10 = I \left(\frac{4.6}{4.6} \right) = \left(\frac{1}{10} = \frac{1}{10} \right)$

- Why do power companies transport power at high voltages? \(\frac{1}{2} = \frac{1}{2} \rightarrow \frac{1}{2} \frac{1}{2} \rightarrow \frac{1}{2} \frac{1}{2} \rightarrow \frac{1}{2} \fra
- The same potential difference is established across a 30 W light bulb and a 60 W light bulb.
- The power ratings for the bulbs assumes they are connect how?
- Draw that circuit.
- Which bulb has a higher resistance? www laves P= 00"
- Which bulb has a greater current? 60 W, P= 16V

Ohm jokes

Ohm Jokes II

OWA The Tange

ohn less ohn mo