Circuits Review

I. General
(A) I =
$$\frac{dQ}{dt}$$
 (A) flow rate, Not speed
(B) R = $\frac{p}{A}$ p^{-} resistivity AD
(C) Ohm's Law: $\Delta V = IR$
(D) Power = $I^{2}R = I\Delta V = \frac{\Delta V^{2}}{R} = \frac{dE}{dt}$
(E) $C = \frac{Q}{\Delta V}$; $parallel plates C = \frac{\varepsilon A}{d} K$
(J) $c = \frac{1}{2}C\Delta V^{2}$
II. Resistor Circuits
(A) Series

i.
$$R_{eq} = \sum_{i} R_{i}$$

ii. $\frac{1}{C_{eq}} = \sum_{i} \frac{1}{C_{i}}$

(B) Parallel

- i. $\frac{l}{R_{eq}} = \sum_{i} \frac{l}{R_{i}}$
- ii. C_{eq} = \sum C_i
- (C) Complex i. Solve for Reg
 - ii. Solve for I through battery
 - iii. Use $\Delta \sqrt{2} \mathcal{I} \mathcal{R}$

- (F) Capacitor a t = 0 and t = ∞ i. An uncharged capacitor acts like a Wire
 - ii. A charged capacitor acts like a

opposing batterylopen switch Ic = 0

TEST - 1 period 7 M.C. Capacitor, Ceq, Q
Complex, Whentstore · Power · RC graphs F.R, Complex RC when C is fully charged I=1A V., = 7V

