Charge Distribution

If God had meant for us to be naked, we would have been born that way.

Electric Field of a Continuous Charge Distribution

For continuous charge distribution we

- 1. Divide the charge distribution into small elements that each contain Δq .
- We use equation for E to calculate electric field due to one element at point P.
- We then determine the total E due to all elements.

Continuous Distribution

- $\Delta E = k_e \Delta q$ if for each $\Delta \gamma$
- $\Delta E = k_e \sum_{r, 2} \Delta q_i \quad \tilde{r}_i$

at P in the limit $\Delta q_i \rightarrow 0$ is Because the distribution is continuous the total field

$$E = k_e \lim_{\delta j \to \infty} \sum_{i_j = 2} \frac{\Delta q_i}{r_i} \quad \check{\mathbf{r}}_i$$

$$\mathbf{E} = \mathbf{k}_{\mathbf{e}} \left\{ \frac{\mathbf{dq} \, \mathbf{\dot{r}}}{\mathbf{r}^2} \right\}$$

distri buted

charge

Charge Density

<u>ر</u> ا

- For uniform density:
- > Volume charge density, $\rho \equiv Q/V$ (C/m^3)
- \triangleright Surface charge density, $\sigma \equiv Q/A/(C/m^2)$
- \geq Linear charge density, $\lambda \equiv Q/L$ (C/m)
- For nonuniform densities
- $\rho = dQ/dV$
- $> \sigma = dQ/dA$
- $\lambda = dQ/dL \rightarrow \lambda dx dq$
- Examples 23.7, 23.8 & 23.9 are great (pages 724-726)

23.7
$$E_{p}=?$$
 $E_{p}=K\int \frac{dq}{x^{2}}$
 $E_{$