
Let the downward direction be positive. We begin with .m=∑F a  As shown, the 

net force is m b= −∑F g v ; thus, m m b= −a g v  or b
m= −a g v . Since ,d

dt= va  we 

have the differential equation representing the object’s motion while falling: 
d b
dt m= −v g v . 

 

We wish to solve for v as a function of time. This equation is separable: 
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md dt= −v g v  In order to maintain my sanity, I will now begin ignoring vectors. 
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. We are now ready to integrate; we will 

choose our limits as 0t =  to 1t t=  and 0v v=  to ( )1v v t= . 
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( )

]
1

1

0

0
ln

v t
t

v

m b
g v t

b m

⎤⎛ ⎞− − =⎜ ⎟⎥⎝ ⎠⎦
. 

 

Plugging in the limits and subtracting, ( )1 0 1ln ln
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. Logarithm 

manipulation rules allow the left side to be written as 
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( )1 :v t  multiply both sides by 
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Then we raise e to the power of both sides to give 
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 multiplying through by the 

left side’s denominator leaves ( ) ( )1
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b
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m mg v t e g v−− − = − , and then it’s trivial to rearrange 
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Frequently we assume 0 0v = . If so, then ( ) ( )1
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b
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bv t g e−= − . The general shape of this graph is 

shown below, where the horizontal asymptote represents the terminal velocity T .
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