Let the downward direction be positive. We begin with $\sum \mathbf{F} = m\mathbf{a}$. As shown, the net force is $\sum \mathbf{F} = m\mathbf{g} - b\mathbf{v}$; thus, $m\mathbf{a} = m\mathbf{g} - b\mathbf{v}$ or $\mathbf{a} = \mathbf{g} - \frac{b}{m}\mathbf{v}$. Since $\mathbf{a} = \frac{d\mathbf{v}}{dt}$, we have the differential equation representing the object's motion while falling: $\frac{d\mathbf{v}}{dt} = \mathbf{g} - \frac{b}{m}\mathbf{v}$.

 $b\mathbf{v}$

mg

 $d\mathbf{v} = (\mathbf{g} - \frac{b}{m}\mathbf{v})dt$. In order to maintain my sanity, I will now begin ignoring vectors. This equation then becomes $\frac{dv}{g - \frac{b}{m}v} = dt$. We are now ready to integrate; we will choose our limits as t = 0 to $t = t_1$ and $v = v_0$ to $v = v(t_1)$.

This gives $\int_{v_0}^{v(t_1)} \frac{dv}{g - \frac{b}{m}v} = \int_0^{t_1} dt$. An antiderivative for the left side is $-\frac{m}{b} \ln \left(g - \frac{b}{m}v\right)$;

for the right side, *t*. Therefore, the equation is $-\frac{m}{b}\ln\left(g-\frac{b}{m}v\right)\Big|_{v_0}^{v(t_1)} = t\Big|_0^{t_1}$.

We wish to solve for **v** as a function of time. This equation is separable:

Plugging in the limits and subtracting, $-\frac{m}{b}\left(\ln\left(g-\frac{b}{m}v(t_1)\right)-\ln\left(g-\frac{b}{m}v_0\right)\right)-=t_1$. Logarithm manipulation rules allow the left side to be written as $-\frac{m}{b}\ln\frac{g-\frac{b}{m}v(t_1)}{g-\frac{b}{m}v_0}$. Now we can solve for $v(t_1)$: multiply both sides by $-\frac{b}{m}$, giving $\ln\frac{g-\frac{b}{m}v(t_1)}{g-\frac{b}{m}v_0}=-\frac{b}{m}t_1$.

Then we raise *e* to the power of both sides to give $\frac{g - \frac{b}{m}v(t_1)}{g - \frac{b}{m}v_0} - = e^{-\frac{b}{m}t_1}$; multiplying through by the left side's denominator leaves $g - \frac{b}{m}v(t_1) - = e^{-\frac{b}{m}t_1}(g - \frac{b}{m}v_0)$, and then it's trivial to rearrange things to get $\frac{m}{b}(g - e^{-\frac{b}{m}t_1}(g - \frac{b}{m}v_0)) = v(t_1)$.

Frequently we assume $v_0 = 0$. If so, then $v(t_1) = \frac{m}{b}g(1 - e^{-\frac{b}{m}t_1})$. The general shape of this graph is shown below, where the horizontal asymptote represents the terminal velocity $v_T = \frac{m}{b}g$.

