Let the downward direction be positive. We begin with $\sum \mathbf{F} = m\mathbf{a}$. As shown, the net force is $\sum \mathbf{F} = m\mathbf{g} - b\mathbf{v}$; thus, $m\mathbf{a} = m\mathbf{g} - b\mathbf{v}$ or $\mathbf{a} = \mathbf{g} - \frac{b}{m}\mathbf{v}$. Since $\mathbf{a} = \frac{d\mathbf{v}}{dt}$, we have the differential equation representing the object's motion while falling: $\frac{d\mathbf{v}}{dt} = \mathbf{g} - \frac{b}{m} \mathbf{v}$.

bv

mg

 $d\mathbf{v} = (\mathbf{g} - \frac{b}{m}\mathbf{v})dt$. In order to maintain my sanity, I will now begin ignoring vectors. This equation then becomes $\frac{dv}{g-\frac{b}{m}}$ $\frac{dv}{g - \frac{b}{m}v} = dt$. We are now ready to integrate; we will choose our limits as $t = 0$ to $t = t_1$ and $v = v_0$ to $v = v(t_1)$.

This gives $\int_{v_0}^{v(t_1)} \frac{dv}{g - h v} = \int_0^{t_1}$ $v(t_1)$ dV t_1 *v*₀ $g-\frac{b}{m}$ $\int_{v_0}^{v(t_1)} \frac{dv}{g-\frac{b}{m}v} = \int_0^{t_1} dt$. An antiderivative for the left side is $-\frac{m}{b} \ln \left(g-\frac{b}{m}v\right)$ $-\frac{m}{b} \ln \left(g - \frac{b}{m} v \right);$

for the right side, *t*. Therefore, the equation is $\begin{aligned} \binom{t_1}{ } & = t \Big]_0^{t_1} \end{aligned}$ 0 $\ln |g-\frac{b}{m}v|| = t\Big]_0^{t_1}$ *v t t v* $\frac{m}{l}$ ln $\left(g - \frac{b}{l}v\right)\Big|^{(n)} = t$ $-\frac{m}{b} \ln \left(g - \frac{b}{m} v \right) \bigg]_{v_0}^{v_{(1)}} = t \bigg]_0^{t_1}.$

We wish to solve for **v** as a function of time. This equation is separable:

Plugging in the limits and subtracting, $-\frac{m}{b} \left[ln \left(g - \frac{b}{m} v(t_1) \right) - ln \left(g - \frac{b}{m} v_0 \right) \right] - t_1$ $-\frac{m}{b}\left(\ln\left(g-\frac{b}{m}v(t_1)\right)-\ln\left(g-\frac{b}{m}v_0\right)\right)$ = t_1 . Logarithm manipulation rules allow the left side to be written as $-\frac{m}{I} \ln \frac{g - \frac{b}{m}v(t_1)}{h}$ 0 ln *b m b m* m_{1} $g-\frac{b}{m}v(t)$ $-\frac{m}{b}\ln\frac{g-\frac{b}{m}v(t_1)}{g-\frac{b}{m}v_0}$. Now we can solve for $v(t_1)$: multiply both sides by $-\frac{b}{m}$ $-\frac{b}{m}$, giving $\ln \frac{g-\frac{b}{m}v(t_1)}{g-\frac{b}{m}v(t_1)} = -\frac{b}{m}t_1$ 0 ln *b m b m* $\frac{g - \frac{b}{m}v(t_1)}{t_1} = -\frac{b}{m}t$ $\frac{f - \frac{b}{m}v(t_1)}{g - \frac{b}{m}v_0} = -\frac{b}{m}t_1.$

Then we raise *e* to the power of both sides to give $\frac{g - \frac{b}{m}v(t_1)}{l} = e^{-\frac{b}{m}t_1}$ 0 $\frac{b}{m}$ t_1 ; $\frac{b}{m}V(t_1)$ $\frac{b}{2-m}t$ *b m* $\frac{g - \frac{b}{m}v(t_1)}{h} - e$ $\frac{f-\frac{b}{m}\,V\left(\,t_{1}\,\right)}{g-\frac{b}{m}\,V_{0}}=e^{-\frac{b}{m}t_{1}};$ multiplying through by the left side's denominator leaves $g-\frac{b}{m}v(t_1) - e^{-\frac{b}{m}t_1} (g-\frac{b}{m}v_0)$ $g-\frac{b}{m}v(t_1)$ – = $e^{-\frac{b}{m}t_1}(g-\frac{b}{m}v_0)$, and then it's trivial to rearrange things to get $\frac{m}{b} (g - e^{-\frac{b}{m}t_1} (g - \frac{b}{m} v_0)) = v(t_1)$ $\frac{m}{b} (g - e^{-\frac{b}{m}t_1} (g - \frac{b}{m} v_0)) = v(t_1).$

Frequently we assume $v_0 = 0$. If so, then $v(t_1) = \frac{m}{b}g(1 - e^{-\frac{b}{m}t_1})$. The general shape of this graph is shown below, where the horizontal asymptote represents the terminal velocity $v_r = \frac{m}{b}g$.

