AP Physics C

Drozdoff 8-9

Quiz Solutions — Chapter 7, 10/3/2007

Scored out of 20 points; maximum of 22 points possible.

1a $W = F \Delta d \cos \theta$ or $W = F \Delta x \cos \theta$ (deltas not required)

- **1b** $W = \mathbf{F} \cdot \Delta \mathbf{d}$ or $W = \mathbf{F} \cdot \Delta \mathbf{x}$ (deltas not required)
- **1c** $W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ is the ideal answer, but do not require \mathcal{C} , accept (reasonable) limits or lack thereof, and allow $\cdot d\mathbf{x}$ or, though horrendous, $\cdot d\mathbf{d}$ for the differential element **Scoring**: one point per correct answer
- 2 $W = \int \mathbf{F} \cdot d\mathbf{x} = \int (-kx^3) dx = \frac{1}{4}kx^4$ (accept the use of a constant of integration) Scoring: one point for $W = \int \mathbf{F} \cdot d\mathbf{x}$ or similar, one point for plugging in $\|\mathbf{F}\| = -kx^3$, one point for correct evaluation of the integral
- **3** The work-kinetic energy theorem states that $W = \Delta K$ (accept delta on the opposite side). For example, if a force brings a moving object to a stop, the work done by the force can be determined by the change in kinetic energy (from $\frac{1}{2}m\|\mathbf{v}_0\|^2$ to 0); answers may vary for this part.

Scoring: one point for correctness of theorem, two for example of application

4 Fish ladders do not reduce the amount of work that the fish must do to get past the dam; they are advantageous merely because they allow the fish to do the necessary work in smaller individual jumps.

Scoring: one point for "no", two points for explanation

5
$$\mathcal{P} = \frac{dW}{dt} = \frac{d}{dt} (\mathbf{F} \cdot \Delta \mathbf{x}) = \mathbf{F} \cdot \frac{d\mathbf{x}}{dt} + \Delta \mathbf{x} \cdot \frac{d\mathbf{F}}{dt} = \mathbf{F} \cdot \mathbf{v} + \Delta \mathbf{x} \cdot \frac{d\mathbf{F}}{dt}$$
. Now $\frac{d\mathbf{F}}{dt}$ is typically zero (that is, the object has no jerk), so $\mathcal{P} = \mathbf{F} \cdot \mathbf{v} + \Delta \mathbf{x} \cdot (\mathbf{0}) = \mathbf{F} \cdot \mathbf{v}$, which was what we wanted.

Scoring: one point for $\mathcal{P} = \frac{dW}{dt}$; one point for $\frac{d}{dt}(\mathbf{F} \cdot \Delta \mathbf{x})$; one point for the product rule expansion; one point for assuming $\frac{d\mathbf{F}}{dt} = \mathbf{0}$ and the correct answer

6a
$$K_A = \frac{1}{2} (2m_B) \|\mathbf{v}_B\|^2$$
 and $K_B = \frac{1}{2} m_B \|\mathbf{v}_B\|^2$, so the ratio is $\frac{1}{\frac{1}{2}} = 2$.

6b
$$K_A = \frac{1}{2} m_B \left\| \frac{1}{4} \mathbf{v}_B \right\|^2 = \frac{1}{2} m_B \cdot \frac{1}{16} \left\| \mathbf{v}_B \right\|^2 = \frac{1}{32} m \left\| \mathbf{v}_B \right\|^2$$
 and $K_B = \frac{1}{2} m_B \left\| \mathbf{v}_B \right\|^2$, so the ratio is $\frac{1}{16}$.

6c
$$K_A = \frac{1}{2} \left(\frac{1}{3} m_B \right) \| \mathbf{v}_A \|^2 = \frac{1}{6} m_B \| \mathbf{v}_A \|^2$$
 and $K_B = \frac{1}{2} m_B \| 2 \mathbf{v}_A \|^2 = \frac{1}{2} m_B \cdot 4 \| \mathbf{v}_A \|^2 = 2 m_B \| \mathbf{v}_A \|^2$, so the ratio is $\frac{1}{12}$.

Scoring: one point per correct answer

7a
$$\mathbf{F} = -k\mathbf{x} \Rightarrow k = \frac{\|\mathbf{F}\|}{\|\mathbf{x}\|} = \frac{230. \text{ N}}{0.400 \text{ m}} = 575 \text{ N} \cdot \text{m}^{-1}$$

7b
$$W = \overline{\mathbf{F}} \cdot \Delta \mathbf{x} = \left(\frac{230. \text{ N}}{2}\right) \cdot 0.400 \text{ m} = 46.0 \text{ J}$$

7c $\mathcal{P} = \frac{\Delta W}{\Delta t} = \frac{46.0 \text{ J}}{4.50 \text{ s}} = 10.2 \text{ W}$ (if the student did 7b incorrectly but applied the wrong

answer correctly to this part, full credit is granted)

Scoring: one point per correct answer, noting comment on part **c**